summaryrefslogtreecommitdiff
path: root/FinMap.agda
diff options
context:
space:
mode:
authorHelmut Grohne <grohne@cs.uni-bonn.de>2014-02-14 16:35:25 +0100
committerHelmut Grohne <grohne@cs.uni-bonn.de>2014-02-14 16:35:25 +0100
commitf4e7869c1d203fcf406b01e34d6276adf49fb79a (patch)
tree02c8c43dd8aaf494bb9d74ce3677bd0bfc0941bc /FinMap.agda
parent04b7bf8fabf64a2414d64cfb385f6a397da0a0fb (diff)
parent0ff83361e08eec6d6a5ab9a44f35b0b8590d2031 (diff)
downloadbidiragda-f4e7869c1d203fcf406b01e34d6276adf49fb79a.tar.gz
Merge branch feature-shape-update into master
The branch enables shape updates in variety of flavours: * explicitly passing the desired target shape * providing a plugin sput : ℕ → ℕ → Maybe ℕ * providing a right-inverse to getlen It also provides a backwards compatibility function to facilitate shape-retaining updates.
Diffstat (limited to 'FinMap.agda')
-rw-r--r--FinMap.agda9
1 files changed, 9 insertions, 0 deletions
diff --git a/FinMap.agda b/FinMap.agda
index c46e637..240bbe1 100644
--- a/FinMap.agda
+++ b/FinMap.agda
@@ -40,6 +40,11 @@ fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)
fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMapMaybe n A
fromFunc = mapV just ∘ tabulate
+reshape : {n : ℕ} {A : Set} → FinMapMaybe n A → (l : ℕ) → FinMapMaybe l A
+reshape m zero = []
+reshape [] (suc l) = nothing ∷ (reshape [] l)
+reshape (x ∷ xs) (suc l) = x ∷ (reshape xs l)
+
union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMapMaybe n A → FinMapMaybe n A
union m1 m2 = tabulate (λ f → maybe′ just (lookupM f m2) (lookupM f m1))
@@ -108,6 +113,10 @@ lemma-lookupM-delete {i = zero} {j = suc j} (_ ∷ _) p = refl
lemma-lookupM-delete {i = suc i} {j = zero} (x ∷ xs) p = refl
lemma-lookupM-delete {i = suc i} {j = suc j} (x ∷ xs) p = lemma-lookupM-delete xs (p ∘ cong suc)
+lemma-reshape-id : {n : ℕ} {A : Set} → (m : FinMapMaybe n A) → reshape m n ≡ m
+lemma-reshape-id [] = refl
+lemma-reshape-id (x ∷ xs) = cong (_∷_ x) (lemma-reshape-id xs)
+
lemma-disjoint-union : {n m : ℕ} {A : Set} → (f : Fin n → A) → (t : Vec (Fin n) m) → union (restrict f (toList t)) (delete-many t (fromFunc f)) ≡ fromFunc f
lemma-disjoint-union {n} {m} f t = trans (lemma-tabulate-∘ (lemma-inner t)) (sym (lemma-fromFunc-tabulate f))
where lemma-inner : {m : ℕ} → (t : Vec (Fin n) m) → (x : Fin n) → maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f (toList t))) ≡ just (f x)