summaryrefslogtreecommitdiff
path: root/FreeTheorems.agda
diff options
context:
space:
mode:
authorHelmut Grohne <grohne@cs.uni-bonn.de>2014-01-28 15:15:12 +0100
committerHelmut Grohne <grohne@cs.uni-bonn.de>2014-01-28 15:15:12 +0100
commit1c3da162d500cfe885fa21b4d75847c4bcbb2aa1 (patch)
tree75af4c2ff1fc049ea0a0b02b2104c16a93ab3d6a /FreeTheorems.agda
parentb0eb7ada208d33eb82ec27cb7d40b9fa59646c92 (diff)
downloadbidiragda-1c3da162d500cfe885fa21b4d75847c4bcbb2aa1.tar.gz
define bff on a partial getlen
The representation chosen is to give both an injection gl₁ and a function gl₂ (formerly getlen), such that by choosing a non-identity for gl₁ partiality of getlen can be expressed. An alternative would have been to allow getlen to return a Maybe ℕ and have get return maybe (Vec A) ⊤ (getlen n) thus sending all inputs for which getlen yields nothing to tt. It seems that while there is no way to obtain a such a getlen predicate from an arbitrary index Setoid I, it should be possible to manufacture a Setoid from a predicate. Thanks to Stefan Mehner for the insightful discussion.
Diffstat (limited to 'FreeTheorems.agda')
-rw-r--r--FreeTheorems.agda27
1 files changed, 25 insertions, 2 deletions
diff --git a/FreeTheorems.agda b/FreeTheorems.agda
index f37cada..aacb95a 100644
--- a/FreeTheorems.agda
+++ b/FreeTheorems.agda
@@ -1,10 +1,15 @@
module FreeTheorems where
+open import Level using () renaming (zero to ℓ₀)
open import Data.Nat using (ℕ)
open import Data.List using (List ; map)
open import Data.Vec using (Vec) renaming (map to mapV)
open import Function using (_∘_)
-open import Relation.Binary.PropositionalEquality using (_≗_)
+open import Function.Equality using (_⟶_ ; _⟨$⟩_)
+open import Function.Injection using (module Injection) renaming (Injection to _↪_)
+open import Relation.Binary.PropositionalEquality using (_≗_ ; cong) renaming (setoid to EqSetoid)
+open import Relation.Binary using (Setoid)
+open Injection using (to)
module ListList where
get-type : Set₁
@@ -17,5 +22,23 @@ module VecVec where
get-type : (ℕ → ℕ) → Set₁
get-type getlen = {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n)
+ free-theorem-type : Set₁
+ free-theorem-type = {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get
+
+ postulate
+ free-theorem : free-theorem-type
+
+module PartialVecVec where
+ get-type : {I : Setoid ℓ₀ ℓ₀} → (I ↪ (EqSetoid ℕ)) → (I ⟶ (EqSetoid ℕ)) → Set₁
+ get-type {I} gl₁ gl₂ = {A : Set} {i : Setoid.Carrier I} → Vec A (to gl₁ ⟨$⟩ i) → Vec A (gl₂ ⟨$⟩ i)
+
postulate
- free-theorem : {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get
+ free-theorem : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ (EqSetoid ℕ)) → (gl₂ : I ⟶ (EqSetoid ℕ)) (get : get-type gl₁ gl₂) → {α β : Set} → (f : α → β) → {i : Setoid.Carrier I} → get {_} {i} ∘ mapV f ≗ mapV f ∘ get
+
+ open VecVec using () renaming (free-theorem-type to VecVec-free-theorem-type)
+
+ ≡-to-Π : {A B : Set} → (A → B) → EqSetoid A ⟶ EqSetoid B
+ ≡-to-Π f = record { _⟨$⟩_ = f; cong = cong f }
+
+ VecVec-free-theorem : VecVec-free-theorem-type
+ VecVec-free-theorem {getlen} get = free-theorem Function.Injection.id (≡-to-Π getlen) get