diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2013-12-16 17:34:59 +0100 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2013-12-16 17:34:59 +0100 |
commit | 2f999bfd6553cb31ebffe4c32d0a2a52dedaf4d3 (patch) | |
tree | c204596acfa8626c47c291f86f57ec8f51a50bd2 /Generic.agda | |
parent | ce9855e6c2e8b88499ebd9660e0cd225146c1b6b (diff) | |
download | bidiragda-2f999bfd6553cb31ebffe4c32d0a2a52dedaf4d3.tar.gz |
move generic functions to a new Generic module
Diffstat (limited to 'Generic.agda')
-rw-r--r-- | Generic.agda | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/Generic.agda b/Generic.agda new file mode 100644 index 0000000..c7cbc45 --- /dev/null +++ b/Generic.agda @@ -0,0 +1,47 @@ +module Generic where + +open import Data.List using (List ; length ; replicate) renaming ([] to []L ; _∷_ to _∷L_) +open import Data.Maybe using (Maybe ; just) +open import Data.Nat using (ℕ ; zero ; suc) +open import Data.Product using (_×_ ; _,_) +open import Data.Vec using (Vec ; toList ; fromList ; map) renaming ([] to []V ; _∷_ to _∷V_) +open import Function using (_∘_) +open import Relation.Binary.Core using (_≡_ ; refl) +open import Relation.Binary.PropositionalEquality using (_≗_ ; cong ; subst ; trans) + +∷-injective : {A : Set} {n : ℕ} {x y : A} {xs ys : Vec A n} → + (x ∷V xs) ≡ (y ∷V ys) → x ≡ y × xs ≡ ys +∷-injective refl = refl , refl + +just-injective : {A : Set} → {x y : A} → Maybe.just x ≡ Maybe.just y → x ≡ y +just-injective refl = refl + +length-replicate : {A : Set} {a : A} → (n : ℕ) → length (replicate n a) ≡ n +length-replicate zero = refl +length-replicate (suc n) = cong suc (length-replicate n) + +map-just-injective : {A : Set} {n : ℕ} {xs ys : Vec A n} → + map Maybe.just xs ≡ map Maybe.just ys → xs ≡ ys +map-just-injective {xs = []V} {ys = []V} p = refl +map-just-injective {xs = x ∷V xs′} {ys = y ∷V ys′} p with ∷-injective p +map-just-injective {xs = x ∷V xs′} {ys = .x ∷V ys′} p | refl , p′ = cong (_∷V_ x) (map-just-injective p′) + +subst-cong : {A : Set} → (T : A → Set) → {g : A → A} → {a b : A} → (f : {c : A} → T c → T (g c)) → (p : a ≡ b) → + f ∘ subst T p ≗ subst T (cong g p) ∘ f +subst-cong T f refl _ = refl + +subst-fromList : {A : Set} {x y : List A} → (p : y ≡ x) → + subst (Vec A) (cong length p) (fromList y) ≡ fromList x +subst-fromList refl = refl + +subst-subst : {A : Set} (T : A → Set) {a b c : A} → (p : a ≡ b) → (p′ : b ≡ c) → (x : T a) → + subst T p′ (subst T p x) ≡ subst T (trans p p′) x +subst-subst T refl p′ x = refl + +toList-fromList : {A : Set} → (l : List A) → toList (fromList l) ≡ l +toList-fromList []L = refl +toList-fromList (x ∷L xs) = cong (_∷L_ x) (toList-fromList xs) + +toList-subst : {A : Set} → {n m : ℕ} (v : Vec A n) → (p : n ≡ m) → + toList (subst (Vec A) p v) ≡ toList v +toList-subst v refl = refl |