summaryrefslogtreecommitdiff
path: root/Generic.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2018-11-25 10:35:23 +0100
committerHelmut Grohne <helmut@subdivi.de>2018-11-25 10:35:23 +0100
commitc835e655a05c73f7dd2dc46c652be3d43e91a4b7 (patch)
tree3089ac9a52dfd62e931926cb5900d9b266f0f298 /Generic.agda
parent04e312472d4737815cf6c37258b547673faa0b91 (diff)
downloadbidiragda-c835e655a05c73f7dd2dc46c652be3d43e91a4b7.tar.gz
reorganize equality imports
Since we are working with multiple setoids now, it makes more sense to qualify their members. Follow the "as P" pattern from the standard library. Also stop importing those symbols from Relation.Binary.Core as later agda-stdlib versions will move them away. Rather than EqSetoid or PropEq, use P.setoid consistently.
Diffstat (limited to 'Generic.agda')
-rw-r--r--Generic.agda47
1 files changed, 23 insertions, 24 deletions
diff --git a/Generic.agda b/Generic.agda
index 9046ebb..90f5816 100644
--- a/Generic.agda
+++ b/Generic.agda
@@ -13,19 +13,18 @@ open import Function using (_∘_ ; id ; flip)
open import Function.Equality using (_⟶_)
open import Level using () renaming (zero to ℓ₀)
open import Relation.Binary using (Setoid ; module Setoid)
-open import Relation.Binary.Core using (_≡_ ; refl)
open import Relation.Binary.Indexed using (_at_) renaming (Setoid to ISetoid)
-open import Relation.Binary.PropositionalEquality using (_≗_ ; cong ; subst ; trans ; cong₂) renaming (setoid to EqSetoid)
+open import Relation.Binary.PropositionalEquality as P using (_≡_ ; _≗_)
open Setoid using () renaming (_≈_ to _∋_≈_)
open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_)
open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_)
-≡-to-Π : {A B : Set} → (A → B) → EqSetoid A ⟶ EqSetoid B
-≡-to-Π f = record { _⟨$⟩_ = f; cong = cong f }
+≡-to-Π : {A B : Set} → (A → B) → P.setoid A ⟶ P.setoid B
+≡-to-Π f = record { _⟨$⟩_ = f; cong = P.cong f }
just-injective : {A : Set} → {x y : A} → Maybe.just x ≡ Maybe.just y → x ≡ y
-just-injective refl = refl
+just-injective P.refl = P.refl
sequenceV : {A : Set} {n : ℕ} → Vec (Maybe A) n → Maybe (Vec A n)
sequenceV []V = just []V
@@ -35,39 +34,39 @@ mapMV : {A B : Set} {n : ℕ} → (A → Maybe B) → Vec A n → Maybe (Vec B n
mapMV f = sequenceV ∘ map f
mapMV-cong : {A B : Set} {f g : A → Maybe B} → f ≗ g → {n : ℕ} → mapMV {n = n} f ≗ mapMV g
-mapMV-cong f≗g v = cong sequenceV (map-cong f≗g v)
+mapMV-cong f≗g v = P.cong sequenceV (map-cong f≗g v)
mapMV-purity : {A B : Set} {n : ℕ} → (f : A → B) → (v : Vec A n) → mapMV (Maybe.just ∘ f) v ≡ just (map f v)
-mapMV-purity f []V = refl
-mapMV-purity f (x ∷V xs) = cong (_<$>_ (_∷V_ (f x))) (mapMV-purity f xs)
+mapMV-purity f []V = P.refl
+mapMV-purity f (x ∷V xs) = P.cong (_<$>_ (_∷V_ (f x))) (mapMV-purity f xs)
-maybeEq-from-≡ : {A : Set} {a b : Maybe A} → a ≡ b → MaybeEq (EqSetoid A) ∋ a ≈ b
-maybeEq-from-≡ {a = just x} {b = .(just x)} refl = just refl
-maybeEq-from-≡ {a = nothing} {b = .nothing} refl = nothing
+maybeEq-from-≡ : {A : Set} {a b : Maybe A} → a ≡ b → MaybeEq (P.setoid A) ∋ a ≈ b
+maybeEq-from-≡ {a = just x} {b = .(just x)} P.refl = just P.refl
+maybeEq-from-≡ {a = nothing} {b = .nothing} P.refl = nothing
-maybeEq-to-≡ : {A : Set} {a b : Maybe A} → MaybeEq (EqSetoid A) ∋ a ≈ b → a ≡ b
-maybeEq-to-≡ (just refl) = refl
-maybeEq-to-≡ nothing = refl
+maybeEq-to-≡ : {A : Set} {a b : Maybe A} → MaybeEq (P.setoid A) ∋ a ≈ b → a ≡ b
+maybeEq-to-≡ (just P.refl) = P.refl
+maybeEq-to-≡ nothing = P.refl
subst-cong : {A : Set} → (T : A → Set) → {g : A → A} → {a b : A} → (f : {c : A} → T c → T (g c)) → (p : a ≡ b) →
- f ∘ subst T p ≗ subst T (cong g p) ∘ f
-subst-cong T f refl _ = refl
+ f ∘ P.subst T p ≗ P.subst T (P.cong g p) ∘ f
+subst-cong T f P.refl _ = P.refl
subst-fromList : {A : Set} {x y : List A} → (p : y ≡ x) →
- subst (Vec A) (cong length p) (fromList y) ≡ fromList x
-subst-fromList refl = refl
+ P.subst (Vec A) (P.cong length p) (fromList y) ≡ fromList x
+subst-fromList P.refl = P.refl
subst-subst : {A : Set} (T : A → Set) {a b c : A} → (p : a ≡ b) → (p′ : b ≡ c) → (x : T a) →
- subst T p′ (subst T p x) ≡ subst T (trans p p′) x
-subst-subst T refl p′ x = refl
+ P.subst T p′ (P.subst T p x) ≡ P.subst T (P.trans p p′) x
+subst-subst T P.refl p′ x = P.refl
toList-fromList : {A : Set} → (l : List A) → toList (fromList l) ≡ l
-toList-fromList []L = refl
-toList-fromList (x ∷L xs) = cong (_∷L_ x) (toList-fromList xs)
+toList-fromList []L = P.refl
+toList-fromList (x ∷L xs) = P.cong (_∷L_ x) (toList-fromList xs)
toList-subst : {A : Set} → {n m : ℕ} (v : Vec A n) → (p : n ≡ m) →
- toList (subst (Vec A) p v) ≡ toList v
-toList-subst v refl = refl
+ toList (P.subst (Vec A) p v) ≡ toList v
+toList-subst v P.refl = P.refl
VecISetoid : Setoid ℓ₀ ℓ₀ → ISetoid ℕ ℓ₀ ℓ₀
VecISetoid S = record