diff options
-rw-r--r-- | Bidir.agda | 58 |
1 files changed, 54 insertions, 4 deletions
@@ -3,12 +3,14 @@ module Bidir where open import Data.Bool hiding (_≟_) open import Data.Nat open import Data.Fin +open import Data.Fin.Props renaming (_≟_ to _≟F_) open import Data.Maybe open import Data.List hiding (replicate) open import Data.Vec hiding (map ; zip ; _>>=_) renaming (lookup to lookupVec) open import Data.Product hiding (zip ; map) open import Function open import Relation.Nullary +open import Relation.Nullary.Negation open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality @@ -73,13 +75,61 @@ lemma-insert-same [] () a p lemma-insert-same (.(just a) ∷ xs) zero a refl = refl lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p) +lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → nothing ≡ lookupM {A} i empty +lemma-lookupM-empty zero = refl +lemma-lookupM-empty (suc i) = lemma-lookupM-empty i + +lemma-from-just : {A : Set} → {x y : A} → _≡_ {_} {Maybe A} (just x) (just y) → x ≡ y +lemma-from-just refl = refl + +lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → just a ≡ lookupM i (insert i a m) +lemma-lookupM-insert zero _ (_ ∷ _) = sym refl +lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs + +lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m) +lemma-lookupM-insert-other zero zero a m p = contradiction refl p +lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl +lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl +lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (contraposition (cong suc) p) + +lemma-lookupM-generate : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → just a ≡ lookupM i (generate f is) → a ≡ f i +lemma-lookupM-generate {A} i f [] a p with begin + just a + ≡⟨ p ⟩ + lookupM i (generate f []) + ≡⟨ refl ⟩ + lookupM i empty + ≡⟨ sym (lemma-lookupM-empty i) ⟩ + nothing ∎ + where open Relation.Binary.PropositionalEquality.≡-Reasoning +lemma-lookupM-generate i f [] a p | () +lemma-lookupM-generate i f (i' ∷ is) a p with i ≟F i' +lemma-lookupM-generate i f (.i ∷ is) a p | yes refl = lemma-from-just (begin + just a + ≡⟨ p ⟩ + lookupM i (generate f (i ∷ is)) + ≡⟨ refl ⟩ + lookupM i (insert i (f i) (generate f is)) + ≡⟨ sym (lemma-lookupM-insert i (f i) (generate f is)) ⟩ + just (f i) ∎) + where open Relation.Binary.PropositionalEquality.≡-Reasoning +lemma-lookupM-generate i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-generate i f is a (begin + just a + ≡⟨ p ⟩ + lookupM i (generate f (i' ∷ is)) + ≡⟨ refl ⟩ + lookupM i (insert i' (f i') (generate f is)) + ≡⟨ sym (lemma-lookupM-insert-other i i' (f i') (generate f is) ¬p2) ⟩ + lookupM i (generate f is) ∎) + where open Relation.Binary.PropositionalEquality.≡-Reasoning + lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is)) lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is) lemma-checkInsert-generate eq f i is | nothing | _ = refl -lemma-checkInsert-generate eq f i is | just x | _ with eq (f i) x -lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] p | yes refl = cong just (lemma-insert-same (generate f is) i (f i) (sym p)) -lemma-checkInsert-generate eq f i is | just x | _ | no ¬p = {!!} - +lemma-checkInsert-generate eq f i is | just x | Reveal_is_.[_] prf with lemma-lookupM-generate i f is x (sym prf) +lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl with eq (f i) (f i) +lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | yes refl = cong just (lemma-insert-same (generate f is) i (f i) (sym prf)) +lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | no ¬p = contradiction refl ¬p lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is) lemma-1 eq f [] = refl |