summaryrefslogtreecommitdiff
path: root/Bidir.agda
blob: 4bdc5734d92d7e828e63e62b5a5cf9d6614cd288 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
module Bidir where

open import Data.Bool hiding (_≟_)
open import Data.Nat
open import Data.Fin
open import Data.Maybe
open import Data.List hiding (replicate)
open import Data.Vec hiding (map ; zip ; _>>=_) renaming (lookup to lookupVec)
open import Data.Product hiding (zip ; map)
open import Function
open import Relation.Nullary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality

_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B
_>>=_ = flip (flip maybe′ nothing)

fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
fmap f = maybe′ (λ a → just (f a)) nothing

module FinMap where

  FinMapMaybe : ℕ → Set → Set
  FinMapMaybe n A = Vec (Maybe A) n

  lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A
  lookupM = lookupVec

  insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A
  insert f a m = m [ f ]≔ (just a)

  empty : {A : Set} {n : ℕ} → FinMapMaybe n A
  empty = replicate nothing

  fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A
  fromAscList []             = empty
  fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)

  FinMap : ℕ → Set → Set
  FinMap n A = Vec A n

  lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A
  lookup = lookupVec

  fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A
  fromFunc = tabulate

  union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n  A → FinMap n A
  union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1))

open FinMap

EqInst : Set → Set
EqInst A = (x y : A) → Dec (x ≡ y)

checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
checkInsert eq i b m with lookupM i m
checkInsert eq i b m | just c with eq b c
checkInsert eq i b m | just .b | yes refl = just m
checkInsert eq i b m | just c  | no ¬p    = nothing
checkInsert eq i b m | nothing = just (insert i b m)

assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A)
assoc _  []       []       = just empty
assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b)
assoc _  _        _        = nothing

generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
generate f is = fromAscList (zip is (map f is))

lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → just a ≡ lookupM f m → m ≡ insert f a m
lemma-insert-same []               ()      a p
lemma-insert-same (.(just a) ∷ xs) zero    a refl = refl
lemma-insert-same (x ∷ xs)         (suc i) a p    = cong (_∷_ x) (lemma-insert-same xs i a p)

lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is))
lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is)
lemma-checkInsert-generate eq f i is | nothing | _ = refl
lemma-checkInsert-generate eq f i is | just x | _ with eq (f i) x
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] p | yes refl = cong just (lemma-insert-same (generate f is) i (f i) (sym p))
lemma-checkInsert-generate eq f i is | just x | _ | no ¬p = {!!}


lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
lemma-1 eq f []        = refl
lemma-1 eq f (i ∷ is′) = begin
  (assoc eq (i ∷ is′) (map f (i ∷ is′)))
    ≡⟨ refl ⟩
  (assoc eq is′ (map f is′) >>= checkInsert eq i (f i))
    ≡⟨ cong (λ m → m >>= checkInsert eq i (f i)) (lemma-1 eq f is′) ⟩
  (just (generate f is′) >>= (checkInsert eq i (f i)))
    ≡⟨ refl ⟩
  (checkInsert eq i (f i) (generate f is′))
    ≡⟨ lemma-checkInsert-generate eq f i is′ ⟩
  just (generate f (i ∷ is′)) ∎
     where open Relation.Binary.PropositionalEquality.≡-Reasoning

lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v
lemma-2 eq []       []       h p = refl
lemma-2 eq []       (x ∷ xs) h ()
lemma-2 eq (x ∷ xs) []       h ()
lemma-2 eq (i ∷ is) (x ∷ xs) h p = {!!}

idrange : (n : ℕ) → List (Fin n)
idrange n = toList (tabulate id)

bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B))
bff get eq s v = let s′ = idrange (length s)
                     g  = fromFunc (λ f → lookupVec f (fromList s))
                     h  = assoc eq (get s′) v
                     h′ = fmap (flip union g) h
                 in fmap (flip map s′ ∘ flip lookup) h′

theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : EqInst τ) → (s : List τ) → bff get eq s (get s) ≡ just s
theorem-1 get eq s = {!!}