diff options
-rw-r--r-- | Bidir.agda | 29 |
1 files changed, 26 insertions, 3 deletions
@@ -9,7 +9,7 @@ open import Function using (id ; _∘_ ; flip) open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary.Core using (_≡_ ; refl) -open import Relation.Binary.PropositionalEquality using (cong ; inspect ; Reveal_is_) +open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; Reveal_is_) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import FinMap @@ -55,11 +55,34 @@ lemma-1 eq f (i ∷ is′) = begin ≡⟨ lemma-checkInsert-generate eq f i is′ ⟩ just (generate f (i ∷ is′)) ∎ -lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v +lemma-lookupM-assoc : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (is : List (Fin n)) → (x : A) → (xs : List A) → (h : FinMapMaybe n A) → assoc eq (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x +lemma-lookupM-assoc eq i is x xs h p with assoc eq is xs +lemma-lookupM-assoc eq i is x xs h () | nothing +lemma-lookupM-assoc eq i is x xs h p | just h' with lookupM i h' | inspect (lookupM i) h' +lemma-lookupM-assoc eq i is x xs .(insert i x h') refl | just h' | nothing | _ = lemma-lookupM-insert i x h' +lemma-lookupM-assoc eq i is x xs h p | just h' | just y | _ with eq x y +lemma-lookupM-assoc eq i is x xs h () | just h' | just y | _ | no ¬prf +lemma-lookupM-assoc eq i is x xs h p | just h' | just .x | Reveal_is_.[_] p' | yes refl = begin + lookupM i h + ≡⟨ cong (lookupM i) (lemma-from-just (sym p)) ⟩ + lookupM i h' + ≡⟨ p' ⟩ + just x ∎ + +lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → assoc eq is v ≡ just h → map (flip lookupM h) is ≡ map just v lemma-2 eq [] [] h p = refl lemma-2 eq [] (x ∷ xs) h () lemma-2 eq (x ∷ xs) [] h () -lemma-2 eq (i ∷ is) (x ∷ xs) h p = {!!} +lemma-2 eq (i ∷ is) (x ∷ xs) h p = begin + map (flip lookupM h) (i ∷ is) + ≡⟨ refl ⟩ + lookup i h ∷ map (flip lookupM h) is + ≡⟨ cong (flip _∷_ (map (flip lookup h) is)) (lemma-lookupM-assoc eq i is x xs h p) ⟩ + just x ∷ map (flip lookupM h) is + ≡⟨ cong (_∷_ (just x)) (lemma-2 eq is xs h {!!}) ⟩ + just x ∷ map just xs + ≡⟨ refl ⟩ + map just (x ∷ xs) ∎ idrange : (n : ℕ) → List (Fin n) idrange n = toList (tabulate id) |