summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Bidir.agda42
1 files changed, 22 insertions, 20 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 9a1dad1..84d3b73 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -13,43 +13,45 @@ open import Relation.Binary.Core
module FinMap where
- FinMap : ℕ → Set → Set
- FinMap n A = Vec (Maybe A) n
-
- lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → Maybe A
- lookup = lookupVec
+ FinMapMaybe : ℕ → Set → Set
+ FinMapMaybe n A = Vec (Maybe A) n
- notMember : {A : Set} → {n : ℕ} → Fin n → FinMap n A → Bool
- notMember n = not ∘ maybeToBool ∘ lookup n
+ lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A
+ lookupM = lookupVec
- insert : {A : Set} {n : ℕ} → Fin n → A → FinMap n A → FinMap n A
+ insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A
insert f a m = m [ f ]≔ (just a)
- empty : {A : Set} {n : ℕ} → FinMap n A
+ empty : {A : Set} {n : ℕ} → FinMapMaybe n A
empty = replicate nothing
- fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMap n A
- fromAscList [] = empty
- fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)
+ FinMap : ℕ → Set → Set
+ FinMap n A = Vec A n
+
+ lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A
+ lookup = lookupVec
+
+ fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A
+ fromFunc = tabulate
- union : {A : Set} {n : ℕ} → FinMap n A → FinMap n A → FinMap n A
- union m1 m2 = tabulate (λ f → maybe′ just (lookup f m2) (lookup f m1))
+ union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n A → FinMap n A
+ union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1))
open FinMap
-checkInsert : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → Fin n → A → FinMap n A → Maybe (FinMap n A)
-checkInsert eq i b m with lookup i m
+checkInsert : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
+checkInsert eq i b m with lookupM i m
checkInsert eq i b m | just c with eq b c
checkInsert eq i b m | just .b | yes refl = just m
checkInsert eq i b m | just c | no ¬p = nothing
checkInsert eq i b m | nothing = just (insert i b m)
-assoc : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → List (Fin n) → List A → Maybe (FinMap n A)
+assoc : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → List (Fin n) → List A → Maybe (FinMapMaybe n A)
assoc _ [] [] = just empty
assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs)
assoc _ _ _ = nothing
-generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMap n A
+generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
generate f [] = empty
generate f (n ∷ ns) = insert n (f n) (generate f ns)
@@ -62,7 +64,7 @@ idrange n = toList (tabulate id)
bff : ({A : Set} → List A → List A) → ({B : Set} → ((x y : B) → Dec (x ≡ y)) → List B → List B → Maybe (List B))
bff get eq s v = let s′ = idrange (length s)
- g = fromAscList (zip s′ s)
+ g = fromFunc (λ f → lookupVec f (fromList s))
h = assoc eq (get s′) v
h′ = maybe′ (λ jh → just (union jh g)) nothing h
- in maybe′ (λ jh′ → just (map {!!} s′)) nothing h′
+ in maybe′ (λ jh′ → just (map (flip lookup jh′) s′)) nothing h′