diff options
-rw-r--r-- | BFF.agda | 37 | ||||
-rw-r--r-- | Bidir.agda | 24 |
2 files changed, 39 insertions, 22 deletions
diff --git a/BFF.agda b/BFF.agda new file mode 100644 index 0000000..5c0e279 --- /dev/null +++ b/BFF.agda @@ -0,0 +1,37 @@ +module BFF where + +open import Data.Nat using (ℕ) +open import Data.Fin using (Fin) +open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) +open import Data.List using (List ; [] ; _∷_ ; map ; length) +open import Data.Vec using (Vec ; toList ; fromList ; tabulate) renaming (lookup to lookupVec) +open import Function using (id ; _∘_ ; flip) + +open import FinMap +open import CheckInsert + +_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B +_>>=_ = flip (flip maybe′ nothing) + +fmap : {A B : Set} → (A → B) → Maybe A → Maybe B +fmap f = maybe′ (λ a → just (f a)) nothing + +module ListBFF where + + assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A) + assoc _ [] [] = just empty + assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b) + assoc _ _ _ = nothing + + enumerate : {A : Set} → (l : List A) → List (Fin (length l)) + enumerate l = toList (tabulate id) + + denumerate : {A : Set} (l : List A) → Fin (length l) → A + denumerate l = flip lookupVec (fromList l) + + bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B)) + bff get eq s v = let s′ = enumerate s + g = fromFunc (denumerate s) + h = assoc eq (get s′) v + h′ = fmap (flip union g) h + in fmap (flip map s′ ∘ flip lookup) h′ @@ -23,16 +23,9 @@ open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨ open import FinMap open import CheckInsert -_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B -_>>=_ = flip (flip maybe′ nothing) +open import BFF using (_>>=_ ; fmap) -fmap : {A B : Set} → (A → B) → Maybe A → Maybe B -fmap f = maybe′ (λ a → just (f a)) nothing - -assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A) -assoc _ [] [] = just empty -assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b) -assoc _ _ _ = nothing +open BFF.ListBFF using (assoc ; enumerate ; denumerate ; bff) lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (restrict f is) lemma-1 eq f [] = refl @@ -169,19 +162,6 @@ lemma-2 eq (i ∷ is) (x ∷ xs) h p | just h' | Reveal_is_.[_] ir = begin ≡⟨ refl ⟩ map just (x ∷ xs) ∎ -enumerate : {A : Set} → (l : List A) → List (Fin (length l)) -enumerate l = toList (tabulate id) - -denumerate : {A : Set} (l : List A) → Fin (length l) → A -denumerate l = flip lookupVec (fromList l) - -bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B)) -bff get eq s v = let s′ = enumerate s - g = fromFunc (denumerate s) - h = assoc eq (get s′) v - h′ = fmap (flip union g) h - in fmap (flip map s′ ∘ flip lookup) h′ - postulate free-theorem-list-list : {β γ : Set} → (get : {α : Set} → List α → List α) → (f : β → γ) → get ∘ map f ≗ map f ∘ get |