summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Bidir.agda13
-rw-r--r--Generic.agda5
2 files changed, 10 insertions, 8 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 438225d..e0960f5 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -32,17 +32,18 @@ import CheckInsert
open CheckInsert A
import BFF
open BFF.VecBFF A using (assoc ; enumerate ; denumerate ; bff)
+open Setoid using () renaming (_≈_ to _∋_≈_)
open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq)
module SetoidReasoning where
infix 1 begin⟨_⟩_
infixr 2 _≈⟨_⟩_ _≡⟨_⟩_
infix 2 _∎
- begin⟨_⟩_ : (X : Setoid ℓ₀ ℓ₀) → {x y : Setoid.Carrier X} → EqR._IsRelatedTo_ X x y → Setoid._≈_ X x y
+ begin⟨_⟩_ : (X : Setoid ℓ₀ ℓ₀) → {x y : Setoid.Carrier X} → EqR._IsRelatedTo_ X x y → X ∋ x ≈ y
begin⟨_⟩_ X p = EqR.begin_ X p
_∎ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → EqR._IsRelatedTo_ X x x
_∎ {X} = EqR._∎ X
- _≈⟨_⟩_ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → Setoid._≈_ X x y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
+ _≈⟨_⟩_ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → X ∋ x ≈ y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
_≈⟨_⟩_ {X} = EqR._≈⟨_⟩_ X
_≡⟨_⟩_ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → x ≡ y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
@@ -58,7 +59,7 @@ lemma-1 f (i ∷ is′) = begin
just (restrict f (toList (i ∷ is′))) ∎
where open ≡-Reasoning
-lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → Setoid._≈_ (MaybeSetoid A.setoid) (lookupM i h) (just x)
+lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → MaybeSetoid A.setoid ∋ lookupM i h ≈ just x
lemma-lookupM-assoc i is x xs h p with assoc is xs
lemma-lookupM-assoc i is x xs h () | nothing
lemma-lookupM-assoc i is x xs h p | just h' with checkInsert i x h' | insertionresult i x h'
@@ -94,7 +95,7 @@ lemma-map-lookupM-assoc i x h h' ph (j ∷ js) (Data.List.All._∷_ (x' , pl) pj
(trans (lemma-lookupM-checkInsert j i x' x h' h pl ph) (sym pl))
(lemma-map-lookupM-assoc i x h h' ph js pj)
-lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is v ≡ just h → ISetoid._≈_ (VecISetoid (MaybeSetoid A.setoid)) (map (flip lookupM h) is) (map just v)
+lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is v ≡ just h → VecISetoid (MaybeSetoid A.setoid) at _ ∋ map (flip lookupM h) is ≈ map just v
lemma-2 [] [] h p = ISetoid.refl (VecISetoid (MaybeSetoid A.setoid))
lemma-2 (i ∷ is) (x ∷ xs) h p with assoc is xs | inspect (assoc is) xs
lemma-2 (i ∷ is) (x ∷ xs) h () | nothing | _
@@ -209,14 +210,14 @@ lemma-get-mapMV {f = f} {v = v} p get = let w , pw = lemma-mapM-successful v p i
mapMV f (get v) ∎
where open ≡-Reasoning
-sequence-cong : {S : Setoid ℓ₀ ℓ₀} {n : ℕ} {m₁ m₂ : Setoid.Carrier (VecISetoid (MaybeSetoid S) at n)} → ISetoid._≈_ (VecISetoid (MaybeSetoid S)) m₁ m₂ → Setoid._≈_ (MaybeSetoid (VecISetoid S at n)) (sequenceV m₁) (sequenceV m₂)
+sequence-cong : {S : Setoid ℓ₀ ℓ₀} {n : ℕ} {m₁ m₂ : Setoid.Carrier (VecISetoid (MaybeSetoid S) at n)} → VecISetoid (MaybeSetoid S) at _ ∋ m₁ ≈ m₂ → MaybeSetoid (VecISetoid S at n) ∋ sequenceV m₁ ≈ sequenceV m₂
sequence-cong {S} VecEq.[]-cong = Setoid.refl (MaybeSetoid (VecISetoid S at _))
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (just x≈y VecEq.∷-cong xs≈ys) with sequenceV xs | sequenceV ys | sequence-cong xs≈ys
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (just x≈y VecEq.∷-cong xs≈ys) | just sxs | just sys | just p = MaybeEq.just (x≈y VecEq.∷-cong p)
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (just x≈y VecEq.∷-cong xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _))
sequence-cong {S} (nothing VecEq.∷-cong xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _))
-theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → ISetoid._≈_ (VecISetoid A.setoid) (get u) v
+theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → VecISetoid A.setoid at _ ∋ get u ≈ v
theorem-2 get v s u p with (lemma->>=-just ((flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (get (enumerate s)) v)) p)
theorem-2 get v s u p | h′ , ph′ with (lemma-<$>-just (assoc (get (enumerate s)) v) ph′)
theorem-2 get v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (VecISetoid A.setoid at _) ⟩
diff --git a/Generic.agda b/Generic.agda
index d757c95..81292ff 100644
--- a/Generic.agda
+++ b/Generic.agda
@@ -15,6 +15,7 @@ open import Relation.Binary.Core using (_≡_ ; refl)
open import Relation.Binary.Indexed using (_at_) renaming (Setoid to ISetoid)
open import Relation.Binary.PropositionalEquality using (_≗_ ; cong ; subst ; trans) renaming (setoid to PropEq)
+open Setoid using () renaming (_≈_ to _∋_≈_)
open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_)
open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_)
@@ -39,11 +40,11 @@ mapMV-purity : {A B : Set} {n : ℕ} → (f : A → B) → (v : Vec A n) → map
mapMV-purity f []V = refl
mapMV-purity f (x ∷V xs) rewrite mapMV-purity f xs = refl
-maybeEq-from-≡ : {A : Set} {a b : Maybe A} → Setoid._≈_ (PropEq (Maybe A)) a b → Setoid._≈_ (MaybeEq (PropEq A)) a b
+maybeEq-from-≡ : {A : Set} {a b : Maybe A} → a ≡ b → MaybeEq (PropEq A) ∋ a ≈ b
maybeEq-from-≡ {a = just x} {b = .(just x)} refl = just refl
maybeEq-from-≡ {a = nothing} {b = .nothing} refl = nothing
-maybeEq-to-≡ : {A : Set} {a b : Maybe A} → Setoid._≈_ (MaybeEq (PropEq A)) a b → Setoid._≈_ (PropEq (Maybe A)) a b
+maybeEq-to-≡ : {A : Set} {a b : Maybe A} → MaybeEq (PropEq A) ∋ a ≈ b → a ≡ b
maybeEq-to-≡ (just refl) = refl
maybeEq-to-≡ nothing = refl