summaryrefslogtreecommitdiff
path: root/BFFPlug.agda
diff options
context:
space:
mode:
Diffstat (limited to 'BFFPlug.agda')
-rw-r--r--BFFPlug.agda8
1 files changed, 4 insertions, 4 deletions
diff --git a/BFFPlug.agda b/BFFPlug.agda
index a31d1bb..0d69723 100644
--- a/BFFPlug.agda
+++ b/BFFPlug.agda
@@ -24,13 +24,13 @@ open DecSetoid A using (Carrier)
open GetTypes.PartialVecVec public using (Get)
open BFF.PartialVecBFF A public using (sbff ; bff)
-bffsameshape : (G : Get) → {i : Get.|I| G} → Vec Carrier (Get.|gl₁| G i) → Vec Carrier (Get.|gl₂| G i) → Maybe (Vec Carrier (Get.|gl₁| G i))
+bffsameshape : (G : Get) → {i : Get.I G} → Vec Carrier (Get.gl₁ G i) → Vec Carrier (Get.gl₂ G i) → Maybe (Vec Carrier (Get.gl₁ G i))
bffsameshape G {i} = sbff G i
-bffplug : (G : Get) → (Get.|I| G → ℕ → Maybe (Get.|I| G)) → {i : Get.|I| G} → {m : ℕ} → Vec Carrier (Get.|gl₁| G i) → Vec Carrier m → Maybe (∃ λ j → Vec (Maybe Carrier) (Get.|gl₁| G j))
+bffplug : (G : Get) → (Get.I G → ℕ → Maybe (Get.I G)) → {i : Get.I G} → {m : ℕ} → Vec Carrier (Get.gl₁ G i) → Vec Carrier m → Maybe (∃ λ j → Vec (Maybe Carrier) (Get.gl₁ G j))
bffplug G sput {i} {m} s v with sput i m
... | nothing = nothing
-... | just j with Get.|gl₂| G j ≟ m
+... | just j with Get.gl₂ G j ≟ m
... | no gl₂j≢m = nothing
bffplug G sput {i} s v | just j | yes refl with bff G j s v
... | nothing = nothing
@@ -39,7 +39,7 @@ bffplug G sput {i} s v | just j | yes refl with bff G j s v
_SimpleRightInvOf_ : {A B : Set} → (A → B) → (B → A) → Set
f SimpleRightInvOf g = ≡-to-Π f RightInverseOf ≡-to-Π g
-bffinv : (G : Get) → (nelteg : ℕ → Get.I G) → nelteg SimpleRightInvOf Get.gl₂ G → {i : Get.|I| G} → {m : ℕ} → Vec Carrier (Get.|gl₁| G i) → Vec Carrier m → Maybe (Vec (Maybe Carrier) (Get.|gl₁| G (nelteg m)))
+bffinv : (G : Get) → (nelteg : ℕ → Get.I G) → nelteg SimpleRightInvOf Get.gl₂ G → {i : Get.I G} → {m : ℕ} → Vec Carrier (Get.gl₁ G i) → Vec Carrier m → Maybe (Vec (Maybe Carrier) (Get.gl₁ G (nelteg m)))
bffinv G nelteg inv {m = m} s v = bff G (nelteg m) s (subst (Vec Carrier) (sym (inv m)) v)
module InvExamples where