summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda11
1 files changed, 6 insertions, 5 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 84d469d..4bdc573 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -74,11 +74,12 @@ lemma-insert-same (.(just a) ∷ xs) zero a refl = refl
lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p)
lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is))
-lemma-checkInsert-generate eq f i is with lookupM i (generate f is)
-lemma-checkInsert-generate eq f i is | nothing = refl
-lemma-checkInsert-generate eq f i is | just x with eq (f i) x
-lemma-checkInsert-generate eq f i is | just .(f i) | yes refl = cong just (lemma-insert-same (generate f is) i (f i) {!!})
-lemma-checkInsert-generate eq f i is | just x | no ¬p = {!!}
+lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is)
+lemma-checkInsert-generate eq f i is | nothing | _ = refl
+lemma-checkInsert-generate eq f i is | just x | _ with eq (f i) x
+lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] p | yes refl = cong just (lemma-insert-same (generate f is) i (f i) (sym p))
+lemma-checkInsert-generate eq f i is | just x | _ | no ¬p = {!!}
+
lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
lemma-1 eq f [] = refl