diff options
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 110 |
1 files changed, 76 insertions, 34 deletions
@@ -22,7 +22,7 @@ open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨ import FreeTheorems open FreeTheorems.VecVec using (get-type ; free-theorem) -open import Generic using (just-injective ; map-just-injective ; mapMV ; mapMV-cong ; mapMV-purity) +open import Generic using (just-injective ; map-just-injective ; mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; sequence-map) open import FinMap import CheckInsert open CheckInsert Carrier deq @@ -130,46 +130,88 @@ theorem-1 get s = begin h′↦r = flip _>>=_ (flip mapMV (enumerate s) ∘ flip lookupVec) -lemma-<$>-just : {A B : Set} {f : A → B} {b : B} {ma : Maybe A} → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a -lemma-<$>-just {ma = just x} f<$>ma≡just-b = x , refl -lemma-<$>-just {ma = nothing} () +lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a +lemma-<$>-just (just x) f<$>ma≡just-b = x , refl +lemma-<$>-just nothing () -{- -lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMap n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map just (map (flip lookup (union h h')) is) ≡ map (flip lookupM h) is +lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMapMaybe n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map (flip lookupM (union h h')) is ≡ map (flip lookupM h) is lemma-union-not-used h h' [] p = refl lemma-union-not-used h h' (i ∷ is') (Data.List.All._∷_ (x , px) p') = cong₂ _∷_ (begin - just (lookup i (union h h')) - ≡⟨ cong just (lookup∘tabulate (λ j → maybe′ id (lookup j h') (lookupM j h)) i) ⟩ - just (maybe′ id (lookup i h') (lookupM i h)) - ≡⟨ cong just (cong (maybe′ id (lookup i h')) px) ⟩ - just (maybe′ id (lookup i h') (just x)) + lookupM i (union h h') + ≡⟨ lookup∘tabulate (λ j → maybe′ just (lookupM j h') (lookupM j h)) i ⟩ + maybe′ just (lookupM i h') (lookupM i h) + ≡⟨ cong (maybe′ just (lookupM i h')) px ⟩ + maybe′ just (lookupM i h') (just x) ≡⟨ sym px ⟩ lookupM i h ∎) (lemma-union-not-used h h' is' p') +lemma->>=-just : {A B : Set} (ma : Maybe A) {f : A → Maybe B} {b : B} → (ma >>= f) ≡ just b → ∃ λ a → ma ≡ just a +lemma->>=-just (just a) p = a , refl +lemma->>=-just nothing () + +lemma-mapMV-just : {A B : Set} {n : ℕ} {f : A → Maybe B} {s : Vec A n} {v : Vec B n} → mapMV f s ≡ just v → All (λ x → ∃ λ y → f x ≡ just y) (toList s) +lemma-mapMV-just {s = []} p = Data.List.All.[] +lemma-mapMV-just {f = f} {s = x ∷ xs} p with f x | inspect f x +lemma-mapMV-just {s = x ∷ xs} () | nothing | _ +lemma-mapMV-just {f = f} {s = x ∷ xs} p | just y | [ py ] with mapMV f xs | inspect (mapMV f) xs +lemma-mapMV-just {s = x ∷ xs} () | just y | [ py ] | nothing | _ +lemma-mapMV-just {s = x ∷ xs} p | just y | [ py ] | just ys | [ pys ] = (y , py) Data.List.All.∷ (lemma-mapMV-just pys) + +lemma-just-sequence : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v +lemma-just-sequence [] = refl +lemma-just-sequence (x ∷ xs) rewrite lemma-just-sequence xs = refl + +lemma-mapM-successful : {A B : Set} {f : A → Maybe B} {n : ℕ} → (v : Vec A n) → {r : Vec B n} → mapMV f v ≡ just r → ∃ λ w → map f v ≡ map just w +lemma-mapM-successful [] p = [] , refl +lemma-mapM-successful {f = f} (x ∷ xs) p with f x | mapMV f xs | inspect (mapMV f) xs +lemma-mapM-successful (x ∷ xs) () | nothing | _ | _ +lemma-mapM-successful (x ∷ xs) () | just y | nothing | _ +lemma-mapM-successful (x ∷ xs) p | just y | just ys | [ p′ ] with lemma-mapM-successful xs p′ +lemma-mapM-successful (x ∷ xs) p | just y | just ys | [ p′ ] | w , pw = y ∷ w , cong (_∷_ (just y)) pw + + +lemma-get-mapMV : {A B : Set} {f : A → Maybe B} {n : ℕ} {v : Vec A n} {r : Vec B n} → mapMV f v ≡ just r → {getlen : ℕ → ℕ} (get : get-type getlen) → get <$> mapMV f v ≡ mapMV f (get v) +lemma-get-mapMV {f = f} {v = v} p get = let w , pw = lemma-mapM-successful v p in begin + get <$> mapMV f v + ≡⟨ cong (_<$>_ get) (sym (sequence-map f v)) ⟩ + get <$> (sequenceV (map f v)) + ≡⟨ cong (_<$>_ get ∘ sequenceV) pw ⟩ + get <$> (sequenceV (map just w)) + ≡⟨ cong (_<$>_ get) (lemma-just-sequence w) ⟩ + get <$> just w + ≡⟨ sym (lemma-just-sequence (get w)) ⟩ + sequenceV (map just (get w)) + ≡⟨ cong sequenceV (sym (free-theorem get just w)) ⟩ + sequenceV (get (map just w)) + ≡⟨ cong (sequenceV ∘ get) (sym pw) ⟩ + sequenceV (get (map f v)) + ≡⟨ cong sequenceV (free-theorem get f v) ⟩ + sequenceV (map f (get v)) + ≡⟨ sequence-map f (get v) ⟩ + mapMV f (get v) ∎ + theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → get u ≡ v -theorem-2 get v s u p with lemma-<$>-just (proj₂ (lemma-<$>-just p)) -theorem-2 get v s u p | h , ph = begin - get u - ≡⟨ just-injective (begin - get <$> (just u) - ≡⟨ cong (_<$>_ get) (sym p) ⟩ - get <$> (bff get s v) - ≡⟨ cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph ⟩ - get <$> (h′↦r <$> (h↦h′ <$> just h)) ∎) ⟩ - get (map (flip lookup (h↦h′ h)) s′) - ≡⟨ free-theorem get (flip lookup (h↦h′ h)) s′ ⟩ - map (flip lookup (h↦h′ h)) (get s′) - ≡⟨ map-just-injective (begin - map just (map (flip lookup (union h g)) (get s′)) - ≡⟨ lemma-union-not-used h g (get s′) (lemma-assoc-domain (get s′) v h ph) ⟩ - map (flip lookupM h) (get s′) - ≡⟨ lemma-2 (get s′) v h ph ⟩ - map just v - ∎) ⟩ - v ∎ +theorem-2 get v s u p with (lemma->>=-just ((flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (get (enumerate s)) v)) p) +theorem-2 get v s u p | h′ , ph′ with (lemma-<$>-just (assoc (get (enumerate s)) v) ph′) +theorem-2 get v s u p | h′ , ph′ | h , ph = just-injective (begin + get <$> (just u) + ≡⟨ cong (_<$>_ get) (sym p) ⟩ + get <$> (bff get s v) + ≡⟨ cong (_<$>_ get ∘ flip _>>=_ h′↦r ∘ _<$>_ h↦h′) ph ⟩ + get <$> mapMV (flip lookupM (h↦h′ h)) s′ + ≡⟨ lemma-get-mapMV (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) get ⟩ + mapMV (flip lookupM (h↦h′ h)) (get s′) + ≡⟨ sym (sequence-map (flip lookupM (h↦h′ h)) (get s′)) ⟩ + sequenceV (map (flip lookupM (h↦h′ h)) (get s′)) + ≡⟨ cong sequenceV (lemma-union-not-used h g′ (get s′) (lemma-assoc-domain (get s′) v h ph)) ⟩ + sequenceV (map (flip lookupM h) (get s′)) + ≡⟨ cong sequenceV (lemma-2 (get s′) v h ph) ⟩ + sequenceV (map just v) + ≡⟨ lemma-just-sequence v ⟩ + just v ∎) where s′ = enumerate s g = fromFunc (denumerate s) - h↦h′ = flip union g - h′↦r = flip map s′ ∘ flip lookupVec --} + g′ = delete-many (get s′) g + h↦h′ = flip union g′ + h′↦r = flip mapMV s′ ∘ flip lookupM |