summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda110
1 files changed, 76 insertions, 34 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 1e65bab..eef8bff 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -22,7 +22,7 @@ open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨
import FreeTheorems
open FreeTheorems.VecVec using (get-type ; free-theorem)
-open import Generic using (just-injective ; map-just-injective ; mapMV ; mapMV-cong ; mapMV-purity)
+open import Generic using (just-injective ; map-just-injective ; mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; sequence-map)
open import FinMap
import CheckInsert
open CheckInsert Carrier deq
@@ -130,46 +130,88 @@ theorem-1 get s = begin
h′↦r = flip _>>=_ (flip mapMV (enumerate s) ∘ flip lookupVec)
-lemma-<$>-just : {A B : Set} {f : A → B} {b : B} {ma : Maybe A} → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a
-lemma-<$>-just {ma = just x} f<$>ma≡just-b = x , refl
-lemma-<$>-just {ma = nothing} ()
+lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a
+lemma-<$>-just (just x) f<$>ma≡just-b = x , refl
+lemma-<$>-just nothing ()
-{-
-lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMap n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map just (map (flip lookup (union h h')) is) ≡ map (flip lookupM h) is
+lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMapMaybe n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map (flip lookupM (union h h')) is ≡ map (flip lookupM h) is
lemma-union-not-used h h' [] p = refl
lemma-union-not-used h h' (i ∷ is') (Data.List.All._∷_ (x , px) p') = cong₂ _∷_ (begin
- just (lookup i (union h h'))
- ≡⟨ cong just (lookup∘tabulate (λ j → maybe′ id (lookup j h') (lookupM j h)) i) ⟩
- just (maybe′ id (lookup i h') (lookupM i h))
- ≡⟨ cong just (cong (maybe′ id (lookup i h')) px) ⟩
- just (maybe′ id (lookup i h') (just x))
+ lookupM i (union h h')
+ ≡⟨ lookup∘tabulate (λ j → maybe′ just (lookupM j h') (lookupM j h)) i ⟩
+ maybe′ just (lookupM i h') (lookupM i h)
+ ≡⟨ cong (maybe′ just (lookupM i h')) px ⟩
+ maybe′ just (lookupM i h') (just x)
≡⟨ sym px ⟩
lookupM i h ∎)
(lemma-union-not-used h h' is' p')
+lemma->>=-just : {A B : Set} (ma : Maybe A) {f : A → Maybe B} {b : B} → (ma >>= f) ≡ just b → ∃ λ a → ma ≡ just a
+lemma->>=-just (just a) p = a , refl
+lemma->>=-just nothing ()
+
+lemma-mapMV-just : {A B : Set} {n : ℕ} {f : A → Maybe B} {s : Vec A n} {v : Vec B n} → mapMV f s ≡ just v → All (λ x → ∃ λ y → f x ≡ just y) (toList s)
+lemma-mapMV-just {s = []} p = Data.List.All.[]
+lemma-mapMV-just {f = f} {s = x ∷ xs} p with f x | inspect f x
+lemma-mapMV-just {s = x ∷ xs} () | nothing | _
+lemma-mapMV-just {f = f} {s = x ∷ xs} p | just y | [ py ] with mapMV f xs | inspect (mapMV f) xs
+lemma-mapMV-just {s = x ∷ xs} () | just y | [ py ] | nothing | _
+lemma-mapMV-just {s = x ∷ xs} p | just y | [ py ] | just ys | [ pys ] = (y , py) Data.List.All.∷ (lemma-mapMV-just pys)
+
+lemma-just-sequence : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v
+lemma-just-sequence [] = refl
+lemma-just-sequence (x ∷ xs) rewrite lemma-just-sequence xs = refl
+
+lemma-mapM-successful : {A B : Set} {f : A → Maybe B} {n : ℕ} → (v : Vec A n) → {r : Vec B n} → mapMV f v ≡ just r → ∃ λ w → map f v ≡ map just w
+lemma-mapM-successful [] p = [] , refl
+lemma-mapM-successful {f = f} (x ∷ xs) p with f x | mapMV f xs | inspect (mapMV f) xs
+lemma-mapM-successful (x ∷ xs) () | nothing | _ | _
+lemma-mapM-successful (x ∷ xs) () | just y | nothing | _
+lemma-mapM-successful (x ∷ xs) p | just y | just ys | [ p′ ] with lemma-mapM-successful xs p′
+lemma-mapM-successful (x ∷ xs) p | just y | just ys | [ p′ ] | w , pw = y ∷ w , cong (_∷_ (just y)) pw
+
+
+lemma-get-mapMV : {A B : Set} {f : A → Maybe B} {n : ℕ} {v : Vec A n} {r : Vec B n} → mapMV f v ≡ just r → {getlen : ℕ → ℕ} (get : get-type getlen) → get <$> mapMV f v ≡ mapMV f (get v)
+lemma-get-mapMV {f = f} {v = v} p get = let w , pw = lemma-mapM-successful v p in begin
+ get <$> mapMV f v
+ ≡⟨ cong (_<$>_ get) (sym (sequence-map f v)) ⟩
+ get <$> (sequenceV (map f v))
+ ≡⟨ cong (_<$>_ get ∘ sequenceV) pw ⟩
+ get <$> (sequenceV (map just w))
+ ≡⟨ cong (_<$>_ get) (lemma-just-sequence w) ⟩
+ get <$> just w
+ ≡⟨ sym (lemma-just-sequence (get w)) ⟩
+ sequenceV (map just (get w))
+ ≡⟨ cong sequenceV (sym (free-theorem get just w)) ⟩
+ sequenceV (get (map just w))
+ ≡⟨ cong (sequenceV ∘ get) (sym pw) ⟩
+ sequenceV (get (map f v))
+ ≡⟨ cong sequenceV (free-theorem get f v) ⟩
+ sequenceV (map f (get v))
+ ≡⟨ sequence-map f (get v) ⟩
+ mapMV f (get v) ∎
+
theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → get u ≡ v
-theorem-2 get v s u p with lemma-<$>-just (proj₂ (lemma-<$>-just p))
-theorem-2 get v s u p | h , ph = begin
- get u
- ≡⟨ just-injective (begin
- get <$> (just u)
- ≡⟨ cong (_<$>_ get) (sym p) ⟩
- get <$> (bff get s v)
- ≡⟨ cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph ⟩
- get <$> (h′↦r <$> (h↦h′ <$> just h)) ∎) ⟩
- get (map (flip lookup (h↦h′ h)) s′)
- ≡⟨ free-theorem get (flip lookup (h↦h′ h)) s′ ⟩
- map (flip lookup (h↦h′ h)) (get s′)
- ≡⟨ map-just-injective (begin
- map just (map (flip lookup (union h g)) (get s′))
- ≡⟨ lemma-union-not-used h g (get s′) (lemma-assoc-domain (get s′) v h ph) ⟩
- map (flip lookupM h) (get s′)
- ≡⟨ lemma-2 (get s′) v h ph ⟩
- map just v
- ∎) ⟩
- v ∎
+theorem-2 get v s u p with (lemma->>=-just ((flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (get (enumerate s)) v)) p)
+theorem-2 get v s u p | h′ , ph′ with (lemma-<$>-just (assoc (get (enumerate s)) v) ph′)
+theorem-2 get v s u p | h′ , ph′ | h , ph = just-injective (begin
+ get <$> (just u)
+ ≡⟨ cong (_<$>_ get) (sym p) ⟩
+ get <$> (bff get s v)
+ ≡⟨ cong (_<$>_ get ∘ flip _>>=_ h′↦r ∘ _<$>_ h↦h′) ph ⟩
+ get <$> mapMV (flip lookupM (h↦h′ h)) s′
+ ≡⟨ lemma-get-mapMV (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) get ⟩
+ mapMV (flip lookupM (h↦h′ h)) (get s′)
+ ≡⟨ sym (sequence-map (flip lookupM (h↦h′ h)) (get s′)) ⟩
+ sequenceV (map (flip lookupM (h↦h′ h)) (get s′))
+ ≡⟨ cong sequenceV (lemma-union-not-used h g′ (get s′) (lemma-assoc-domain (get s′) v h ph)) ⟩
+ sequenceV (map (flip lookupM h) (get s′))
+ ≡⟨ cong sequenceV (lemma-2 (get s′) v h ph) ⟩
+ sequenceV (map just v)
+ ≡⟨ lemma-just-sequence v ⟩
+ just v ∎)
where s′ = enumerate s
g = fromFunc (denumerate s)
- h↦h′ = flip union g
- h′↦r = flip map s′ ∘ flip lookupVec
--}
+ g′ = delete-many (get s′) g
+ h↦h′ = flip union g′
+ h′↦r = flip mapMV s′ ∘ flip lookupM