summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda147
1 files changed, 100 insertions, 47 deletions
diff --git a/Bidir.agda b/Bidir.agda
index ae99c5a..1a661de 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -13,7 +13,7 @@ open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_)
open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_)
open import Data.List using (List)
open import Data.List.All using (All)
-open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map) renaming (lookup to lookupVec)
+open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map ; allFin) renaming (lookup to lookupVec)
open import Data.Vec.Equality using () renaming (module Equality to VecEq)
open import Data.Vec.Properties using (lookup∘tabulate ; map-cong ; map-∘ ; map-lookup-allFin)
open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂)
@@ -24,14 +24,16 @@ open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ;
open import Relation.Binary using (Setoid ; module Setoid ; module DecSetoid)
import Relation.Binary.EqReasoning as EqR
+open import Structures using (Functor ; IsFunctor ; Shaped ; module Shaped)
+open import Instances using (MaybeFunctor)
import GetTypes
-open GetTypes.PartialVecVec using (Get ; module Get)
+open GetTypes.PartialShapeVec using (Get ; module Get)
open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; VecISetoid ; just-injective)
open import FinMap
import CheckInsert
open CheckInsert A
import BFF
-open BFF.PartialVecBFF A using (assoc ; enumerate ; enumeratel ; denumerate ; bff)
+open BFF.PartialShapeBFF A using (assoc ; enumerate ; denumerate ; bff)
open Setoid using () renaming (_≈_ to _∋_≈_)
open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq)
@@ -107,11 +109,24 @@ lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin
just x ∷ map just xs ∎
where open EqR (VecISetoid (MaybeSetoid A.setoid) at _)
-theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Vec Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just (map just s)
+lemma-fmap-denumerate-enumerate : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → {α : Set} {s : S} → (c : C α s) → Shaped.fmap ShapeT (denumerate ShapeT c) (enumerate ShapeT s) ≡ c
+lemma-fmap-denumerate-enumerate {S} {C} ShapeT {s = s} c = begin
+ fmap (denumerate ShapeT c) (fill s (allFin (arity s)))
+ ≡⟨ fill-fmap (denumerate ShapeT c) s (allFin (arity s)) ⟩
+ fill s (map (flip lookupVec (content c)) (allFin (arity s)))
+ ≡⟨ cong (fill s) (map-lookup-allFin (content c)) ⟩
+ fill s (content c)
+ ≡⟨ content-fill c ⟩
+ c ∎
+ where open ≡-Reasoning
+ open Shaped ShapeT
+
+
+theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Get.Container G Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just (Get.fmap G just s)
theorem-1 G {i} s = begin
bff G i s (get s)
- ≡⟨ cong (bff G i s ∘ get) (sym (map-lookup-allFin s)) ⟩
- bff G i s (get (map f t))
+ ≡⟨ cong (bff G i s ∘ get) (sym (lemma-fmap-denumerate-enumerate ShapeT s)) ⟩
+ bff G i s (get (fmap f t))
≡⟨ cong (bff G i s) (free-theorem f t) ⟩
bff G i s (map f (get t))
≡⟨ refl ⟩
@@ -119,26 +134,26 @@ theorem-1 G {i} s = begin
≡⟨ cong (_<$>_ h′↦r ∘ _<$>_ h↦h′) (lemma-1 f (get t)) ⟩
(Maybe.just ∘ h′↦r ∘ h↦h′) (restrict f (toList (get t)))
≡⟨ cong just (begin
- h′↦r (union (restrict f (toList (get t))) (reshape g′ (|gl₁| i)))
+ h′↦r (union (restrict f (toList (get t))) (reshape g′ (arity (|gl₁| i))))
≡⟨ cong (h′↦r ∘ union (restrict f (toList (get t)))) (lemma-reshape-id g′) ⟩
h′↦r (union (restrict f (toList (get t))) g′)
≡⟨ cong h′↦r (lemma-disjoint-union f (get t)) ⟩
h′↦r (fromFunc f)
≡⟨ refl ⟩
- map (flip lookupM (fromFunc f)) t
- ≡⟨ map-cong (lemma-lookupM-fromFunc f) t ⟩
- map (Maybe.just ∘ f) t
- ≡⟨ map-∘ just f t ⟩
- map just (map f t)
- ≡⟨ cong (map just) (map-lookup-allFin s) ⟩
- map just s ∎) ⟩ _ ∎
+ fmap (flip lookupM (fromFunc f)) t
+ ≡⟨ IsFunctor.cong (isFunctor (|gl₁| i)) (lemma-lookupM-fromFunc f) t ⟩
+ fmap (Maybe.just ∘ f) t
+ ≡⟨ IsFunctor.composition (isFunctor (|gl₁| i)) just f t ⟩
+ fmap just (fmap f t)
+ ≡⟨ cong (fmap just) (lemma-fmap-denumerate-enumerate ShapeT s) ⟩
+ fmap just s ∎) ⟩ _ ∎
where open ≡-Reasoning
open Get G
- t = enumeratel (|gl₁| i)
- f = denumerate s
+ t = enumerate ShapeT (|gl₁| i)
+ f = denumerate ShapeT s
g′ = delete-many (get t) (fromFunc f)
- h↦h′ = flip union (reshape g′ (|gl₁| i))
- h′↦r = flip map t ∘ flip lookupM
+ h↦h′ = flip union (reshape g′ (arity (|gl₁| i)))
+ h′↦r = (λ f′ → fmap f′ t) ∘ flip lookupM
lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a
@@ -162,9 +177,21 @@ lemma->>=-just : {A B : Set} (ma : Maybe A) {f : A → Maybe B} {b : B} → (ma
lemma->>=-just (just a) p = a , refl
lemma->>=-just nothing ()
-lemma-just-sequence : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v
-lemma-just-sequence [] = refl
-lemma-just-sequence (x ∷ xs) = cong (_<$>_ (_∷_ x)) (lemma-just-sequence xs)
+lemma-just-sequenceV : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v
+lemma-just-sequenceV [] = refl
+lemma-just-sequenceV (x ∷ xs) = cong (_<$>_ (_∷_ x)) (lemma-just-sequenceV xs)
+
+lemma-just-sequence : (G : Get) → {A : Set} {i : Get.|I| G} → (c : Get.Container G A (Get.|gl₁| G i)) → Get.sequence G (Get.fmap G just c) ≡ just c
+lemma-just-sequence G {i = i} c = begin
+ fill (|gl₁| i) <$> sequenceV (content (fmap just c))
+ ≡⟨ cong (_<$>_ (fill (|gl₁| i)) ∘ sequenceV) (fmap-content just c) ⟩
+ fill (|gl₁| i) <$> sequenceV (map just (content c))
+ ≡⟨ cong (_<$>_ (fill (|gl₁| i))) (lemma-just-sequenceV (content c)) ⟩
+ fill (|gl₁| i) <$> just (content c)
+ ≡⟨ cong just (content-fill c) ⟩
+ just c ∎
+ where open ≡-Reasoning
+ open Get G
lemma-sequenceV-successful : {A : Set} {n : ℕ} → (v : Vec (Maybe A) n) → {r : Vec A n} → sequenceV v ≡ just r → v ≡ map just r
lemma-sequenceV-successful [] {r = []} p = refl
@@ -173,18 +200,44 @@ lemma-sequenceV-successful (just x ∷ xs) () | nothing | _
lemma-sequenceV-successful (just x ∷ xs) {r = .x ∷ .ys} refl | just ys | [ p′ ] = cong (_∷_ (just x)) (lemma-sequenceV-successful xs p′)
lemma-sequenceV-successful (nothing ∷ xs) ()
-lemma-get-sequenceV : {A : Set} → (G : Get) → {i : Get.|I| G} {v : Vec (Maybe A) (Get.|gl₁| G i)} {r : Vec A (Get.|gl₁| G i)} → sequenceV v ≡ just r → Get.get G <$> sequenceV v ≡ sequenceV (Get.get G v)
-lemma-get-sequenceV G {v = v} {r = r} p = begin
- get <$> sequenceV v
- ≡⟨ cong (_<$>_ get ∘ sequenceV) (lemma-sequenceV-successful v p) ⟩
- get <$> sequenceV (map just r)
- ≡⟨ cong (_<$>_ get) (lemma-just-sequence r) ⟩
+lemma-sequence-successful : (G : Get) → {A : Set} {i : Get.|I| G} → (c : Get.Container G (Maybe A) (Get.|gl₁| G i)) → {r : Get.Container G A (Get.|gl₁| G i)} → Get.sequence G c ≡ just r → c ≡ Get.fmap G just r
+lemma-sequence-successful G {i = i} c {r} p = just-injective (sym (begin
+ fill (|gl₁| i) <$> (map just <$> (content <$> just r))
+ ≡⟨ cong (_<$>_ (fill (|gl₁| i)) ∘ _<$>_ (map just)) (begin
+ content <$> just r
+ ≡⟨ cong (_<$>_ content) (sym p) ⟩
+ content <$> (fill (|gl₁| i) <$> sequenceV (content c))
+ ≡⟨ sym (Functor.composition MaybeFunctor content (fill (|gl₁| i)) (sequenceV (content c))) ⟩
+ content ∘ fill (|gl₁| i) <$> sequenceV (content c)
+ ≡⟨ Functor.cong MaybeFunctor (fill-content (|gl₁| i)) (sequenceV (content c)) ⟩
+ id <$> sequenceV (content c)
+ ≡⟨ Functor.identity MaybeFunctor (sequenceV (content c)) ⟩
+ sequenceV (content c)
+ ≡⟨ cong sequenceV (lemma-sequenceV-successful (content c) (proj₂ wp)) ⟩
+ sequenceV (map just (proj₁ wp))
+ ≡⟨ lemma-just-sequenceV (proj₁ wp) ⟩
+ just (proj₁ (lemma-<$>-just (sequenceV (content c)) p)) ∎) ⟩
+ fill (|gl₁| i) <$> (map just <$> just (proj₁ (lemma-<$>-just (sequenceV (content c)) p)))
+ ≡⟨ cong (_<$>_ (fill (|gl₁| i)) ∘ just) (sym (lemma-sequenceV-successful (content c) (proj₂ wp))) ⟩
+ fill (|gl₁| i) <$> just (content c)
+ ≡⟨ cong just (content-fill c) ⟩
+ just c ∎))
+ where open ≡-Reasoning
+ open Get G
+ wp = lemma-<$>-just (sequenceV (content c)) p
+
+lemma-get-sequence : {A : Set} → (G : Get) → {i : Get.|I| G} {v : Get.Container G (Maybe A) (Get.|gl₁| G i)} {r : Get.Container G A (Get.|gl₁| G i)} → Get.sequence G v ≡ just r → Get.get G <$> Get.sequence G v ≡ sequenceV (Get.get G v)
+lemma-get-sequence G {v = v} {r = r} p = begin
+ get <$> sequence v
+ ≡⟨ cong (_<$>_ get ∘ sequence) (lemma-sequence-successful G v p) ⟩
+ get <$> sequence (fmap just r)
+ ≡⟨ cong (_<$>_ get) (lemma-just-sequence G r) ⟩
get <$> just r
- ≡⟨ sym (lemma-just-sequence (get r)) ⟩
+ ≡⟨ sym (lemma-just-sequenceV (get r)) ⟩
sequenceV (map just (get r))
≡⟨ cong sequenceV (sym (free-theorem just r)) ⟩
- sequenceV (get (map just r))
- ≡⟨ cong (sequenceV ∘ get) (sym (lemma-sequenceV-successful v p)) ⟩
+ sequenceV (get (fmap just r))
+ ≡⟨ cong (sequenceV ∘ get) (sym (lemma-sequence-successful G v p)) ⟩
sequenceV (get v) ∎
where open ≡-Reasoning
open Get G
@@ -198,16 +251,16 @@ sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _))
sequence-cong {S} (VecEq._∷-cong_ nothing xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _))
-theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec (Maybe Carrier) (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid (MaybeSetoid A.setoid) at _ ∋ Get.get G u ≈ map just v
-theorem-2 G j s v u p with (lemma-<$>-just ((flip union (reshape (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G j))) <$> (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v)) p)
-theorem-2 G j s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v) ph′)
-theorem-2 G j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid A.setoid) at _ ⟩
+theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Get.Container G Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Get.Container G (Maybe Carrier) (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid (MaybeSetoid A.setoid) at _ ∋ Get.get G u ≈ map just v
+theorem-2 G {i} j s v u p with (lemma-<$>-just ((flip union (reshape (delete-many (Get.get G (enumerate (Get.ShapeT G) (Get.|gl₁| G i))) (fromFunc (denumerate (Get.ShapeT G) s))) (Get.arity G (Get.|gl₁| G j)))) <$> (assoc (Get.get G (enumerate (Get.ShapeT G) (Get.|gl₁| G j))) v)) p)
+theorem-2 G {i} j s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumerate (Get.ShapeT G) (Get.|gl₁| G j))) v) ph′)
+theorem-2 G {i} j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid A.setoid) at _ ⟩
get u
≡⟨ just-injective (trans (cong (_<$>_ get) (sym p))
(cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph)) ⟩
get (h′↦r (h↦h′ h))
≡⟨ refl ⟩
- get (map (flip lookupM (h↦h′ h)) t)
+ get (fmap (flip lookupM (h↦h′ h)) t)
≡⟨ free-theorem (flip lookupM (h↦h′ h)) t ⟩
map (flip lookupM (h↦h′ h)) (get t)
≡⟨ lemma-union-not-used h g′ (get t) (lemma-assoc-domain (get t) v h ph) ⟩
@@ -216,23 +269,23 @@ theorem-2 G j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid
map just v ∎
where open SetoidReasoning
open Get G
- s′ = enumerate s
- g = fromFunc (denumerate s)
+ s′ = enumerate ShapeT (|gl₁| i)
+ g = fromFunc (denumerate ShapeT s)
g′ = delete-many (get s′) g
- t = enumeratel (Get.|gl₁| G j)
- h↦h′ = flip union (reshape g′ (Get.|gl₁| G j))
- h′↦r = flip map t ∘ flip lookupM
+ t = enumerate ShapeT (|gl₁| j)
+ h↦h′ = flip union (reshape g′ (arity (|gl₁| j)))
+ h′↦r = (λ f → fmap f t) ∘ flip lookupM
-theorem-2′ : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just (map just u) → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v
+theorem-2′ : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Get.Container G Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Get.Container G Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just (Get.fmap G just u) → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v
theorem-2′ G j s v u p = drop-just (begin
get <$> just u
- ≡⟨ cong (_<$>_ get) (sym (lemma-just-sequence u)) ⟩
- get <$> sequenceV (map just u)
- ≡⟨ lemma-get-sequenceV G (lemma-just-sequence u) ⟩
- sequenceV (get (map just u))
- ≈⟨ sequence-cong (theorem-2 G j s v (map just u) p) ⟩
+ ≡⟨ cong (_<$>_ get) (sym (lemma-just-sequence G u)) ⟩
+ get <$> sequence (fmap just u)
+ ≡⟨ lemma-get-sequence G (lemma-just-sequence G u) ⟩
+ sequenceV (get (fmap just u))
+ ≈⟨ sequence-cong (theorem-2 G j s v (fmap just u) p) ⟩
sequenceV (map just v)
- ≡⟨ lemma-just-sequence v ⟩
+ ≡⟨ lemma-just-sequenceV v ⟩
just v ∎)
where open EqR (MaybeSetoid (VecISetoid A.setoid at _))
open Get G