summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda81
1 files changed, 2 insertions, 79 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 495fb99..417e7f6 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -14,13 +14,14 @@ open import Data.Vec.Properties using (tabulate-∘ ; lookup∘tabulate)
open import Data.Product using (∃ ; _,_ ; proj₁ ; proj₂)
open import Data.Empty using (⊥-elim)
open import Function using (id ; _∘_ ; flip)
-open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
+open import Relation.Nullary using (yes ; no ; ¬_)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.Core using (_≡_ ; refl)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; Reveal_is_ ; _≗_ ; trans)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
open import FinMap
+open import CheckInsert
_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B
_>>=_ = flip (flip maybe′ nothing)
@@ -28,69 +29,11 @@ _>>=_ = flip (flip maybe′ nothing)
fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
fmap f = maybe′ (λ a → just (f a)) nothing
-EqInst : Set → Set
-EqInst A = (x y : A) → Dec (x ≡ y)
-
-checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
-checkInsert eq i b m with lookupM i m
-checkInsert eq i b m | just c with eq b c
-checkInsert eq i b m | just .b | yes refl = just m
-checkInsert eq i b m | just c | no ¬p = nothing
-checkInsert eq i b m | nothing = just (insert i b m)
assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A)
assoc _ [] [] = just empty
assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b)
assoc _ _ _ = nothing
-record checkInsertProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (P : Set) : Set where
- field
- same : lookupM i m ≡ just x → P
- new : lookupM i m ≡ nothing → P
- wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → P
-
-apply-checkInsertProof : {A P : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → checkInsertProof eq i x m P → P
-apply-checkInsertProof eq i x m rp with lookupM i m | inspect (lookupM i) m
-apply-checkInsertProof eq i x m rp | just x' | il with eq x x'
-apply-checkInsertProof eq i x m rp | just .x | Reveal_is_.[_] il | yes refl = checkInsertProof.same rp il
-apply-checkInsertProof eq i x m rp | just x' | Reveal_is_.[_] il | no x≢x' = checkInsertProof.wrong rp x' x≢x' il
-apply-checkInsertProof eq i x m rp | nothing | Reveal_is_.[_] il = checkInsertProof.new rp il
-
-lemma-checkInsert-same : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ just x → checkInsert eq i x m ≡ just m
-lemma-checkInsert-same eq i x m p with lookupM i m
-lemma-checkInsert-same eq i x m refl | .(just x) with eq x x
-lemma-checkInsert-same eq i x m refl | .(just x) | yes refl = refl
-lemma-checkInsert-same eq i x m refl | .(just x) | no x≢x = contradiction refl x≢x
-
-lemma-checkInsert-new : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ nothing → checkInsert eq i x m ≡ just (insert i x m)
-lemma-checkInsert-new eq i x m p with lookupM i m
-lemma-checkInsert-new eq i x m refl | .nothing = refl
-
-lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing
-lemma-checkInsert-wrong eq i x m x' d p with lookupM i m
-lemma-checkInsert-wrong eq i x m x' d refl | .(just x') with eq x x'
-lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | yes q = contradiction q d
-lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | no ¬q = refl
-
-record checkInsertEqualProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (e : Maybe (FinMapMaybe n A)) : Set where
- field
- same : lookupM i m ≡ just x → just m ≡ e
- new : lookupM i m ≡ nothing → just (insert i x m) ≡ e
- wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → nothing ≡ e
-
-lift-checkInsertProof : {A : Set} {n : ℕ} {eq : EqInst A} {i : Fin n} {x : A} {m : FinMapMaybe n A} {e : Maybe (FinMapMaybe n A)} → checkInsertEqualProof eq i x m e → checkInsertProof eq i x m (checkInsert eq i x m ≡ e)
-lift-checkInsertProof {_} {_} {eq} {i} {x} {m} o = record
- { same = λ p → trans (lemma-checkInsert-same eq i x m p) (checkInsertEqualProof.same o p)
- ; new = λ p → trans (lemma-checkInsert-new eq i x m p) (checkInsertEqualProof.new o p)
- ; wrong = λ x' q p → trans (lemma-checkInsert-wrong eq i x m x' q p) (checkInsertEqualProof.wrong o x' q p)
- }
-
-lemma-checkInsert-restrict : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (restrict f is) ≡ just (restrict f (i ∷ is))
-lemma-checkInsert-restrict {τ} eq f i is = apply-checkInsertProof eq i (f i) (restrict f is) (lift-checkInsertProof record
- { same = λ lookupM≡justx → cong just (lemma-insert-same (restrict f is) i (f i) lookupM≡justx)
- ; new = λ lookupM≡nothing → refl
- ; wrong = λ x' x≢x' lookupM≡justx' → contradiction (lemma-lookupM-restrict i f is x' lookupM≡justx') x≢x'
- })
-
lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (restrict f is)
lemma-1 eq f [] = refl
lemma-1 eq f (i ∷ is′) = begin
@@ -123,26 +66,6 @@ lemma-lookupM-assoc eq i is x xs h p | just h' = apply-checkInsertProof eq i
; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong eq i x h' x' x≢x' lookupM≡justx'))
}
-lemma-lookupM-checkInsert : {A : Set} {n : ℕ} → (eq : EqInst A) → (i j : Fin n) → (x y : A) → (h h' : FinMapMaybe n A) → lookupM i h ≡ just x → checkInsert eq j y h ≡ just h' → lookupM i h' ≡ just x
-lemma-lookupM-checkInsert eq i j x y h h' pl ph' with lookupM j h | inspect (lookupM j) h
-lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' with i ≟ j
-lemma-lookupM-checkInsert eq i .i x y h .(insert i y h) pl refl | nothing | Reveal_is_.[_] pl' | yes refl with begin just x ≡⟨ sym pl ⟩ lookupM i h ≡⟨ pl' ⟩ nothing ∎
-... | ()
-lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' | no ¬p = begin
- lookupM i (insert j y h)
- ≡⟨ sym (lemma-lookupM-insert-other i j y h ¬p) ⟩
- lookupM i h
- ≡⟨ pl ⟩
- just x ∎
-lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just z | pl' with eq y z
-lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just .y | pl' | yes refl = begin
- lookupM i h'
- ≡⟨ cong (lookupM i) (lemma-from-just (sym ph')) ⟩
- lookupM i h
- ≡⟨ pl ⟩
- just x ∎
-lemma-lookupM-checkInsert eq i j x y h h' pl () | just z | pl' | no ¬p
-
lemma-∉-lookupM-assoc : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (is : List (Fin n)) → (xs : List A) → (h : FinMapMaybe n A) → assoc eq is xs ≡ just h → (i ∉ is) → lookupM i h ≡ nothing
lemma-∉-lookupM-assoc eq i [] [] h ph i∉is = begin
lookupM i h