summaryrefslogtreecommitdiff
path: root/Examples.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Examples.agda')
-rw-r--r--Examples.agda18
1 files changed, 9 insertions, 9 deletions
diff --git a/Examples.agda b/Examples.agda
index bedad5a..a36ba3a 100644
--- a/Examples.agda
+++ b/Examples.agda
@@ -8,7 +8,7 @@ open import Data.List using (List ; length) renaming ([] to []L ; _∷_ to _∷L
open import Data.Vec using (Vec ; [] ; _∷_ ; reverse ; _++_ ; tail ; take ; drop ; map)
open import Function using (id)
import Relation.Binary
-open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong)
+open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Structures using (Shaped)
import GetTypes
@@ -40,7 +40,7 @@ tail' : Get
tail' = assume-get suc id tail
tail-example : bff ℕ-decSetoid tail' 2 (8 ∷ 5 ∷ []) (3 ∷ 1 ∷ []) ≡ just (just 8 ∷ just 3 ∷ just 1 ∷ [])
-tail-example = refl
+tail-example = P.refl
take' : ℕ → Get
take' n = assume-get (_+_ n) _ (take n)
@@ -56,7 +56,7 @@ sieve' = assume-get id _ f
f (x ∷ _ ∷ xs) = x ∷ f xs
sieve-example : bff ℕ-decSetoid sieve' 4 (0 ∷ 2 ∷ []) (1 ∷ 3 ∷ []) ≡ just (just 1 ∷ just 2 ∷ just 3 ∷ nothing ∷ [])
-sieve-example = refl
+sieve-example = P.refl
intersperse-len : ℕ → ℕ
intersperse-len zero = zero
@@ -74,10 +74,10 @@ intersperse' = assume-get suc intersperse-len f
f (s ∷ v) = intersperse s v
intersperse-neg-example : bff ℕ-decSetoid intersperse' 3 (0 ∷ []) (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ≡ nothing
-intersperse-neg-example = refl
+intersperse-neg-example = P.refl
intersperse-pos-example : bff ℕ-decSetoid intersperse' 3 (0 ∷ []) (1 ∷ 2 ∷ 3 ∷ 2 ∷ 5 ∷ []) ≡ just (map just (2 ∷ 1 ∷ 3 ∷ 5 ∷ []))
-intersperse-pos-example = refl
+intersperse-pos-example = P.refl
data PairVec (α : Set) (β : Set) : List α → Set where
[]P : PairVec α β []L
@@ -101,9 +101,9 @@ PairVecFirstShaped α = record
fill (a ∷L s) (b ∷ v) = a , b ∷P fill s v
content-fill : {β : Set} {s : List α} → (p : PairVec α β s) → fill s (content p) ≡ p
- content-fill []P = refl
- content-fill (a , b ∷P p) = cong (_,_∷P_ a b) (content-fill p)
+ content-fill []P = P.refl
+ content-fill (a , b ∷P p) = P.cong (_,_∷P_ a b) (content-fill p)
fill-content : {β : Set} → (s : List α) → (v : Vec β (length s)) → content (fill s v) ≡ v
- fill-content []L [] = refl
- fill-content (a ∷L s) (b ∷ v) = cong (_∷_ b) (fill-content s v)
+ fill-content []L [] = P.refl
+ fill-content (a ∷L s) (b ∷ v) = P.cong (_∷_ b) (fill-content s v)