summaryrefslogtreecommitdiff
path: root/FinMap.agda
diff options
context:
space:
mode:
Diffstat (limited to 'FinMap.agda')
-rw-r--r--FinMap.agda8
1 files changed, 2 insertions, 6 deletions
diff --git a/FinMap.agda b/FinMap.agda
index 1ae4c39..b069162 100644
--- a/FinMap.agda
+++ b/FinMap.agda
@@ -6,7 +6,7 @@ open import Data.Maybe using (Maybe ; just ; nothing ; maybe′)
open import Data.Fin using (Fin ; zero ; suc)
open import Data.Fin.Properties using (_≟_)
open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate ; foldr ; zip ; toList) renaming (lookup to lookupVec ; map to mapV)
-open import Data.Vec.Properties using (lookup∘update ; lookup∘update′ ; lookup-replicate)
+open import Data.Vec.Properties using (lookup∘update ; lookup∘update′ ; lookup-replicate ; tabulate-cong)
open import Data.Product using (_×_ ; _,_)
open import Data.List.All as All using (All)
import Data.List.All.Properties as AllP
@@ -109,10 +109,6 @@ lemma-lookupM-restrict-∉ i f (j ∷ js) i∉jjs =
P.trans (lookup∘update′ (All.head i∉jjs) (restrict f js) (just (f j)))
(lemma-lookupM-restrict-∉ i f js (All.tail i∉jjs))
-lemma-tabulate-∘ : {n : ℕ} {A : Set} → {f g : Fin n → A} → f ≗ g → tabulate f ≡ tabulate g
-lemma-tabulate-∘ {zero} {_} {f} {g} f≗g = P.refl
-lemma-tabulate-∘ {suc n} {_} {f} {g} f≗g = P.cong₂ _∷_ (f≗g zero) (lemma-tabulate-∘ (f≗g ∘ suc))
-
lemma-lookupM-fromFunc : {n : ℕ} {A : Set} → (f : Fin n → A) → flip lookupM (fromFunc f) ≗ Maybe.just ∘ f
lemma-lookupM-fromFunc f zero = P.refl
lemma-lookupM-fromFunc f (suc i) = lemma-lookupM-fromFunc (f ∘ suc) i
@@ -134,7 +130,7 @@ lemma-reshape-id [] = P.refl
lemma-reshape-id (x ∷ xs) = P.cong (_∷_ x) (lemma-reshape-id xs)
lemma-disjoint-union : {n m : ℕ} {A : Set} → (f : Fin n → A) → (t : Vec (Fin n) m) → union (restrict f t) (delete-many t (fromFunc f)) ≡ fromFunc f
-lemma-disjoint-union {n} f t = lemma-tabulate-∘ inner
+lemma-disjoint-union {n} f t = tabulate-cong inner
where inner : (x : Fin n) → maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f t)) ≡ just (f x)
inner x with is-∈ _≟_ x t
inner x | yes-∈ x∈t = P.cong (maybe′ just (lookupM x (delete-many t (fromFunc f)))) (lemma-lookupM-restrict-∈ x f t x∈t)