summaryrefslogtreecommitdiff
path: root/FinMap.agda
diff options
context:
space:
mode:
Diffstat (limited to 'FinMap.agda')
-rw-r--r--FinMap.agda16
1 files changed, 4 insertions, 12 deletions
diff --git a/FinMap.agda b/FinMap.agda
index a85f119..1fc2d16 100644
--- a/FinMap.agda
+++ b/FinMap.agda
@@ -64,18 +64,10 @@ partialize = mapV just
lemma-just≢nothing : {A Whatever : Set} {a : A} {ma : Maybe A} → ma ≡ just a → ma ≡ nothing → Whatever
lemma-just≢nothing refl ()
-module Private {S : Setoid ℓ₀ ℓ₀} where
- private
- open Setoid S
- reflMaybe = Setoid.refl (MaybeEq S)
- _≈Maybe_ = Setoid._≈_ (MaybeEq S)
-
- lemma-insert-same : {n : ℕ} → (m : FinMapMaybe n Carrier) → (f : Fin n) → (a : Carrier) → lookupM f m ≈Maybe just a → Setoid._≈_ (vecIsSetoid (MaybeEq S) n) m (insert f a m)
- lemma-insert-same [] () a p
- lemma-insert-same {suc n} (x ∷ xs) zero a p = p ∷-cong Setoid.refl (vecIsSetoid (MaybeEq S) n)
- lemma-insert-same (x ∷ xs) (suc i) a p = reflMaybe ∷-cong lemma-insert-same xs i a p
-
-open Private public
+lemma-insert-same : {n : ℕ} {A : Set} → (m : FinMapMaybe n A) → (f : Fin n) → (a : A) → lookupM f m ≡ just a → m ≡ insert f a m
+lemma-insert-same [] () a p
+lemma-insert-same {suc n} (x ∷ xs) zero a p = cong (flip _∷_ xs) p
+lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p)
lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing
lemma-lookupM-empty zero = refl