diff options
Diffstat (limited to 'Generic.agda')
-rw-r--r-- | Generic.agda | 20 |
1 files changed, 7 insertions, 13 deletions
diff --git a/Generic.agda b/Generic.agda index c458483..9f1172d 100644 --- a/Generic.agda +++ b/Generic.agda @@ -8,6 +8,7 @@ open import Data.Nat using (ℕ ; zero ; suc) open import Data.Product using (_×_ ; _,_) open import Data.Vec using (Vec ; toList ; fromList ; map) renaming ([] to []V ; _∷_ to _∷V_) open import Data.Vec.Equality using () renaming (module Equality to VecEq) +open import Data.Vec.Properties using (map-cong) open import Function using (_∘_ ; id ; flip) open import Function.Equality using (_⟶_) open import Level using () renaming (zero to ℓ₀) @@ -30,13 +31,15 @@ length-replicate : {A : Set} {a : A} → (n : ℕ) → length (replicate n a) ≠length-replicate zero = refl length-replicate (suc n) = cong suc (length-replicate n) +sequenceV : {A : Set} {n : ℕ} → Vec (Maybe A) n → Maybe (Vec A n) +sequenceV []V = just []V +sequenceV (x ∷V xs) = x >>= (λ y → (_∷V_ y) <$> sequenceV xs) + mapMV : {A B : Set} {n : ℕ} → (A → Maybe B) → Vec A n → Maybe (Vec B n) -mapMV f []V = just []V -mapMV f (x ∷V xs) = (f x) >>= (λ y → (_∷V_ y) <$> (mapMV f xs)) +mapMV f = sequenceV ∘ map f mapMV-cong : {A B : Set} {f g : A → Maybe B} → f ≗ g → {n : ℕ} → mapMV {n = n} f ≗ mapMV g -mapMV-cong f≗g []V = refl -mapMV-cong f≗g (x ∷V xs) = cong₂ _>>=_ (f≗g x) (cong (flip (_<$>_ ∘ _∷V_)) (mapMV-cong f≗g xs)) +mapMV-cong f≗g v = cong sequenceV (map-cong f≗g v) mapMV-purity : {A B : Set} {n : ℕ} → (f : A → B) → (v : Vec A n) → mapMV (Maybe.just ∘ f) v ≡ just (map f v) mapMV-purity f []V = refl @@ -50,15 +53,6 @@ maybeEq-to-≡ : {A : Set} {a b : Maybe A} → MaybeEq (EqSetoid A) ∋ a ≈ b maybeEq-to-≡ (just refl) = refl maybeEq-to-≡ nothing = refl -sequenceV : {A : Set} {n : ℕ} → Vec (Maybe A) n → Maybe (Vec A n) -sequenceV = mapMV id - -sequence-map : {A B : Set} {n : ℕ} → (f : A → Maybe B) → sequenceV {n = n} ∘ map f ≗ mapMV f -sequence-map f []V = refl -sequence-map f (x ∷V xs) with f x -sequence-map f (x ∷V xs) | just y = cong (_<$>_ (_∷V_ y)) (sequence-map f xs) -sequence-map f (x ∷V xs) | nothing = refl - subst-cong : {A : Set} → (T : A → Set) → {g : A → A} → {a b : A} → (f : {c : A} → T c → T (g c)) → (p : a ≡ b) → f ∘ subst T p ≗ subst T (cong g p) ∘ f subst-cong T f refl _ = refl |