diff options
Diffstat (limited to 'Generic.agda')
-rw-r--r-- | Generic.agda | 47 |
1 files changed, 23 insertions, 24 deletions
diff --git a/Generic.agda b/Generic.agda index 9046ebb..90f5816 100644 --- a/Generic.agda +++ b/Generic.agda @@ -13,19 +13,18 @@ open import Function using (_∘_ ; id ; flip) open import Function.Equality using (_⟶_) open import Level using () renaming (zero to ℓ₀) open import Relation.Binary using (Setoid ; module Setoid) -open import Relation.Binary.Core using (_≡_ ; refl) open import Relation.Binary.Indexed using (_at_) renaming (Setoid to ISetoid) -open import Relation.Binary.PropositionalEquality using (_≗_ ; cong ; subst ; trans ; cong₂) renaming (setoid to EqSetoid) +open import Relation.Binary.PropositionalEquality as P using (_≡_ ; _≗_) open Setoid using () renaming (_≈_ to _∋_≈_) open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_) open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_) -≡-to-Π : {A B : Set} → (A → B) → EqSetoid A ⟶ EqSetoid B -≡-to-Π f = record { _⟨$⟩_ = f; cong = cong f } +≡-to-Π : {A B : Set} → (A → B) → P.setoid A ⟶ P.setoid B +≡-to-Π f = record { _⟨$⟩_ = f; cong = P.cong f } just-injective : {A : Set} → {x y : A} → Maybe.just x ≡ Maybe.just y → x ≡ y -just-injective refl = refl +just-injective P.refl = P.refl sequenceV : {A : Set} {n : ℕ} → Vec (Maybe A) n → Maybe (Vec A n) sequenceV []V = just []V @@ -35,39 +34,39 @@ mapMV : {A B : Set} {n : ℕ} → (A → Maybe B) → Vec A n → Maybe (Vec B n mapMV f = sequenceV ∘ map f mapMV-cong : {A B : Set} {f g : A → Maybe B} → f ≗ g → {n : ℕ} → mapMV {n = n} f ≗ mapMV g -mapMV-cong f≗g v = cong sequenceV (map-cong f≗g v) +mapMV-cong f≗g v = P.cong sequenceV (map-cong f≗g v) mapMV-purity : {A B : Set} {n : ℕ} → (f : A → B) → (v : Vec A n) → mapMV (Maybe.just ∘ f) v ≡ just (map f v) -mapMV-purity f []V = refl -mapMV-purity f (x ∷V xs) = cong (_<$>_ (_∷V_ (f x))) (mapMV-purity f xs) +mapMV-purity f []V = P.refl +mapMV-purity f (x ∷V xs) = P.cong (_<$>_ (_∷V_ (f x))) (mapMV-purity f xs) -maybeEq-from-≡ : {A : Set} {a b : Maybe A} → a ≡ b → MaybeEq (EqSetoid A) ∋ a ≈ b -maybeEq-from-≡ {a = just x} {b = .(just x)} refl = just refl -maybeEq-from-≡ {a = nothing} {b = .nothing} refl = nothing +maybeEq-from-≡ : {A : Set} {a b : Maybe A} → a ≡ b → MaybeEq (P.setoid A) ∋ a ≈ b +maybeEq-from-≡ {a = just x} {b = .(just x)} P.refl = just P.refl +maybeEq-from-≡ {a = nothing} {b = .nothing} P.refl = nothing -maybeEq-to-≡ : {A : Set} {a b : Maybe A} → MaybeEq (EqSetoid A) ∋ a ≈ b → a ≡ b -maybeEq-to-≡ (just refl) = refl -maybeEq-to-≡ nothing = refl +maybeEq-to-≡ : {A : Set} {a b : Maybe A} → MaybeEq (P.setoid A) ∋ a ≈ b → a ≡ b +maybeEq-to-≡ (just P.refl) = P.refl +maybeEq-to-≡ nothing = P.refl subst-cong : {A : Set} → (T : A → Set) → {g : A → A} → {a b : A} → (f : {c : A} → T c → T (g c)) → (p : a ≡ b) → - f ∘ subst T p ≗ subst T (cong g p) ∘ f -subst-cong T f refl _ = refl + f ∘ P.subst T p ≗ P.subst T (P.cong g p) ∘ f +subst-cong T f P.refl _ = P.refl subst-fromList : {A : Set} {x y : List A} → (p : y ≡ x) → - subst (Vec A) (cong length p) (fromList y) ≡ fromList x -subst-fromList refl = refl + P.subst (Vec A) (P.cong length p) (fromList y) ≡ fromList x +subst-fromList P.refl = P.refl subst-subst : {A : Set} (T : A → Set) {a b c : A} → (p : a ≡ b) → (p′ : b ≡ c) → (x : T a) → - subst T p′ (subst T p x) ≡ subst T (trans p p′) x -subst-subst T refl p′ x = refl + P.subst T p′ (P.subst T p x) ≡ P.subst T (P.trans p p′) x +subst-subst T P.refl p′ x = P.refl toList-fromList : {A : Set} → (l : List A) → toList (fromList l) ≡ l -toList-fromList []L = refl -toList-fromList (x ∷L xs) = cong (_∷L_ x) (toList-fromList xs) +toList-fromList []L = P.refl +toList-fromList (x ∷L xs) = P.cong (_∷L_ x) (toList-fromList xs) toList-subst : {A : Set} → {n m : ℕ} (v : Vec A n) → (p : n ≡ m) → - toList (subst (Vec A) p v) ≡ toList v -toList-subst v refl = refl + toList (P.subst (Vec A) p v) ≡ toList v +toList-subst v P.refl = P.refl VecISetoid : Setoid ℓ₀ ℓ₀ → ISetoid ℕ ℓ₀ ℓ₀ VecISetoid S = record |