blob: 03daf9d5dc06688931ca8d6eb097fbbb863ecfa2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
open import Level using () renaming (zero to ℓ₀)
open import Relation.Binary using (DecSetoid)
module Bidir (A : DecSetoid ℓ₀ ℓ₀) where
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
import Level
import Category.Monad
import Category.Functor
open import Data.Maybe using (Maybe ; nothing ; just ; maybe′) renaming (setoid to MaybeSetoid ; Eq to MaybeEq)
open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_)
open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_)
open import Data.List using (List)
open import Data.List.All using (All)
open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map ; tabulate) renaming (lookup to lookupVec)
open import Data.Vec.Equality using () renaming (module Equality to VecEq)
open import Data.Vec.Properties using (tabulate-∘ ; lookup∘tabulate ; map-cong ; map-∘)
open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂)
open import Function using (id ; _∘_ ; flip)
open import Relation.Binary.Core using (refl ; _≡_)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans ; cong₂ ; decSetoid ; module ≡-Reasoning) renaming (setoid to EqSetoid)
open import Relation.Binary using (Setoid ; module Setoid ; module DecSetoid)
import Relation.Binary.EqReasoning as EqR
import FreeTheorems
open FreeTheorems.VecVec using (get-type ; free-theorem)
open import Generic using (just-injective ; map-just-injective ; vecIsSetoid)
open import FinMap
import CheckInsert
open CheckInsert A
import BFF
open BFF.VecBFF A using (assoc ; enumerate ; denumerate ; bff)
open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq)
module SetoidReasoning where
infix 1 begin⟨_⟩_
infixr 2 _≈⟨_⟩_ _≡⟨_⟩_
infix 2 _∎
begin⟨_⟩_ : (X : Setoid ℓ₀ ℓ₀) → {x y : Setoid.Carrier X} → EqR._IsRelatedTo_ X x y → Setoid._≈_ X x y
begin⟨_⟩_ X p = EqR.begin_ X p
_∎ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → EqR._IsRelatedTo_ X x x
_∎ {X} = EqR._∎ X
_≈⟨_⟩_ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → Setoid._≈_ X x y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
_≈⟨_⟩_ {X} = EqR._≈⟨_⟩_ X
_≡⟨_⟩_ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → x ≡ y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
_≡⟨_⟩_ {X} = EqR._≡⟨_⟩_ X
lemma-1 : {m n : ℕ} → (f : Fin n → Carrier) → (is : Vec (Fin n) m) → assoc is (map f is) ≡ just (restrict f (toList is))
lemma-1 f [] = refl
lemma-1 f (i ∷ is′) = begin
(assoc is′ (map f is′) >>= checkInsert i (f i))
≡⟨ cong (λ m → m >>= checkInsert i (f i)) (lemma-1 f is′) ⟩
checkInsert i (f i) (restrict f (toList is′))
≡⟨ lemma-checkInsert-restrict f i (toList is′) ⟩
just (restrict f (toList (i ∷ is′))) ∎
where open ≡-Reasoning
lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → Setoid._≈_ (MaybeSetoid A.setoid) (lookupM i h) (just x)
lemma-lookupM-assoc i is x xs h p with assoc is xs
lemma-lookupM-assoc i is x xs h () | nothing
lemma-lookupM-assoc i is x xs h p | just h' with checkInsert i x h' | insertionresult i x h'
lemma-lookupM-assoc i is x xs .h refl | just h | ._ | same x' x≈x' pl = begin
lookupM i h
≡⟨ pl ⟩
just x'
≈⟨ MaybeEq.just (Setoid.sym A.setoid x≈x') ⟩
just x ∎
where open EqR (MaybeSetoid A.setoid)
lemma-lookupM-assoc i is x xs ._ refl | just h' | ._ | new _ = Setoid.reflexive (MaybeSetoid A.setoid) (lemma-lookupM-insert i x h')
lemma-lookupM-assoc i is x xs h () | just h' | ._ | wrong _ _ _
_in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set
_in-domain-of_ is h = All (λ i → ∃ λ x → lookupM i h ≡ just x) is
lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (toList is) in-domain-of h
lemma-assoc-domain [] [] h ph = Data.List.All.[]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] with checkInsert i' x' h' | inspect (checkInsert i' x') h' | insertionresult i' x' h'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') .h refl | just h | [ ph' ] | ._ | _ | same x _ pl = All._∷_ (x , pl) (lemma-assoc-domain is' xs' h ph')
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') ._ refl | just h' | [ ph' ] | ._ | [ cI≡ ] | new _ = All._∷_
(x' , lemma-lookupM-insert i' x' h')
(Data.List.All.map
(λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' (insert i' x' h') (proj₂ p) cI≡)
(lemma-assoc-domain is' xs' h' ph'))
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | just h' | [ ph' ] | ._ | _ | wrong _ _ _
lemma-map-lookupM-assoc : {m : ℕ} → (i : Fin m) → (x : Carrier) → (h : FinMapMaybe m Carrier) → (h' : FinMapMaybe m Carrier) → checkInsert i x h' ≡ just h → {n : ℕ} → (js : Vec (Fin m) n) → (toList js) in-domain-of h' → map (flip lookupM h) js ≡ map (flip lookupM h') js
lemma-map-lookupM-assoc i x h h' ph [] pj = refl
lemma-map-lookupM-assoc i x h h' ph (j ∷ js) (Data.List.All._∷_ (x' , pl) pj) = cong₂ _∷_
(trans (lemma-lookupM-checkInsert j i x' x h' h pl ph) (sym pl))
(lemma-map-lookupM-assoc i x h h' ph js pj)
lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is v ≡ just h → Setoid._≈_ (vecIsSetoid (MaybeSetoid A.setoid) m) (map (flip lookupM h) is) (map just v)
lemma-2 [] [] h p = Setoid.refl (vecIsSetoid (MaybeSetoid A.setoid) _)
lemma-2 (i ∷ is) (x ∷ xs) h p with assoc is xs | inspect (assoc is) xs
lemma-2 (i ∷ is) (x ∷ xs) h () | nothing | _
lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin
lookupM i h ∷ map (flip lookupM h) is
≈⟨ lemma-lookupM-assoc i is x xs h (trans (cong (flip _>>=_ (checkInsert i x)) ir) p) VecEq.∷-cong Setoid.refl (vecIsSetoid (MaybeSetoid A.setoid) _) ⟩
just x ∷ map (flip lookupM h) is
≡⟨ cong (_∷_ (just x)) (lemma-map-lookupM-assoc i x h h' p is (lemma-assoc-domain is xs h' ir)) ⟩
just x ∷ map (flip lookupM h') is
≈⟨ Setoid.refl (MaybeSetoid A.setoid) VecEq.∷-cong (lemma-2 is xs h' ir) ⟩
just x ∷ map just xs ∎
where open EqR (vecIsSetoid (MaybeSetoid A.setoid) _)
lemma-map-denumerate-enumerate : {m : ℕ} → (as : Vec Carrier m) → map (denumerate as) (enumerate as) ≡ as
lemma-map-denumerate-enumerate [] = refl
lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin
map (flip lookupVec (a ∷ as)) (tabulate Fin.suc)
≡⟨ cong (map (flip lookupVec (a ∷ as))) (tabulate-∘ Fin.suc id) ⟩
map (flip lookupVec (a ∷ as)) (map Fin.suc (tabulate id))
≡⟨ refl ⟩
map (flip lookupVec (a ∷ as)) (map Fin.suc (enumerate as))
≡⟨ sym (map-∘ _ _ (enumerate as)) ⟩
map (flip lookupVec (a ∷ as) ∘ Fin.suc) (enumerate as)
≡⟨ refl ⟩
map (denumerate as) (enumerate as)
≡⟨ lemma-map-denumerate-enumerate as ⟩
as ∎)
where open ≡-Reasoning
theorem-1 : {getlen : ℕ → ℕ} → (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → bff get s (get s) ≡ just s
theorem-1 get s = begin
bff get s (get s)
≡⟨ cong (bff get s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩
bff get s (get (map (denumerate s) (enumerate s)))
≡⟨ cong (bff get s) (free-theorem get (denumerate s) (enumerate s)) ⟩
bff get s (map (denumerate s) (get (enumerate s)))
≡⟨ refl ⟩
(h′↦r ∘ h↦h′) (assoc (get (enumerate s)) (map (denumerate s) (get (enumerate s))))
≡⟨ cong (h′↦r ∘ h↦h′) (lemma-1 (denumerate s) (get (enumerate s))) ⟩
(h′↦r ∘ h↦h′ ∘ just) (restrict (denumerate s) (toList (get (enumerate s))))
≡⟨ refl ⟩
(h′↦r ∘ just) (union (restrict (denumerate s) (toList (get (enumerate s)))) (fromFunc (denumerate s)))
≡⟨ cong (h′↦r ∘ just) (lemma-union-restrict (denumerate s) (toList (get (enumerate s)))) ⟩
(h′↦r ∘ just) (fromFunc (denumerate s))
≡⟨ refl ⟩
just (map (flip lookup (fromFunc (denumerate s))) (enumerate s))
≡⟨ cong just (map-cong (lookup∘tabulate (denumerate s)) (enumerate s)) ⟩
just (map (denumerate s) (enumerate s))
≡⟨ cong just (lemma-map-denumerate-enumerate s) ⟩
just s ∎
where open ≡-Reasoning
h↦h′ = _<$>_ (flip union (fromFunc (denumerate s)))
h′↦r = _<$>_ (flip map (enumerate s) ∘ flip lookupVec)
lemma-<$>-just : {A B : Set} {f : A → B} {b : B} {ma : Maybe A} → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a
lemma-<$>-just {ma = just x} f<$>ma≡just-b = x , refl
lemma-<$>-just {ma = nothing} ()
lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMap n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map just (map (flip lookup (union h h')) is) ≡ map (flip lookupM h) is
lemma-union-not-used h h' [] p = refl
lemma-union-not-used h h' (i ∷ is') (Data.List.All._∷_ (x , px) p') = cong₂ _∷_ (begin
just (lookup i (union h h'))
≡⟨ cong just (lookup∘tabulate (λ j → maybe′ id (lookup j h') (lookupM j h)) i) ⟩
just (maybe′ id (lookup i h') (lookupM i h))
≡⟨ cong just (cong (maybe′ id (lookup i h')) px) ⟩
just (maybe′ id (lookup i h') (just x))
≡⟨ sym px ⟩
lookupM i h ∎)
(lemma-union-not-used h h' is' p')
where open ≡-Reasoning
map-just-≈-injective : {n : ℕ} {x y : Vec Carrier n} → Setoid._≈_ (vecIsSetoid (MaybeSetoid A.setoid) n) (map just x) (map just y) → Setoid._≈_ (vecIsSetoid A.setoid n) x y
map-just-≈-injective {x = []} {y = []} VecEq.[]-cong = VecEq.[]-cong
map-just-≈-injective {x = _ ∷ _} {y = _ ∷ _} (just x≈y VecEq.∷-cong ps) = x≈y VecEq.∷-cong map-just-≈-injective ps
theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → Setoid._≈_ (vecIsSetoid A.setoid (getlen m)) (get u) v
theorem-2 get v s u p with lemma-<$>-just (proj₂ (lemma-<$>-just p))
theorem-2 get v s u p | h , ph = begin⟨ vecIsSetoid A.setoid _ ⟩
get u
≡⟨ just-injective (begin⟨ EqSetoid _ ⟩
get <$> (just u)
≡⟨ cong (_<$>_ get) (sym p) ⟩
get <$> (bff get s v)
≡⟨ cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph ⟩
get <$> (h′↦r <$> (h↦h′ <$> just h)) ∎) ⟩
get (map (flip lookup (h↦h′ h)) s′)
≡⟨ free-theorem get (flip lookup (h↦h′ h)) s′ ⟩
map (flip lookup (h↦h′ h)) (get s′)
≈⟨ map-just-≈-injective (begin⟨ vecIsSetoid (MaybeSetoid A.setoid) _ ⟩
map just (map (flip lookup (union h g)) (get s′))
≡⟨ lemma-union-not-used h g (get s′) (lemma-assoc-domain (get s′) v h ph) ⟩
map (flip lookupM h) (get s′)
≈⟨ lemma-2 (get s′) v h ph ⟩
map just v
∎) ⟩
v ∎
where open SetoidReasoning
s′ = enumerate s
g = fromFunc (denumerate s)
h↦h′ = flip union g
h′↦r = flip map s′ ∘ flip lookupVec
|