summaryrefslogtreecommitdiff
path: root/Bidir.agda
blob: fae3b9e77e6d2c53c00884c24a7547643090c923 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
open import Level using () renaming (zero to ℓ₀)
open import Relation.Binary using (DecSetoid)

module Bidir (A : DecSetoid ℓ₀ ℓ₀) where

open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
import Level
import Category.Monad
import Category.Functor
open import Data.Maybe using (Maybe ; nothing ; just ; maybe′ ; drop-just) renaming (setoid to MaybeSetoid ; Eq to MaybeEq)
open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_)
open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_)
open import Data.List using (List)
open import Data.List.All using (All)
open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map ; tabulate) renaming (lookup to lookupVec)
open import Data.Vec.Equality using () renaming (module Equality to VecEq)
open import Data.Vec.Properties using (tabulate-∘ ; lookup∘tabulate ; map-cong ; map-∘)
open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂)
open import Function using (id ; _∘_ ; flip)
open import Relation.Binary.Core using (refl ; _≡_)
open import Relation.Binary.Indexed using (_at_) renaming (Setoid to ISetoid)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans ; cong₂ ; decSetoid ; module ≡-Reasoning) renaming (setoid to EqSetoid)
open import Relation.Binary using (Setoid ; module Setoid ; module DecSetoid)
import Relation.Binary.EqReasoning as EqR

import GetTypes
open GetTypes.VecVec using (Get ; module Get)
open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; sequence-map ; VecISetoid)
open import FinMap
import CheckInsert
open CheckInsert A
import BFF
open BFF.VecBFF A using (assoc ; enumerate ; denumerate ; bff)
open Setoid using () renaming (_≈_ to _∋_≈_)
open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq)

module SetoidReasoning where
 infix 1 begin⟨_⟩_
 infixr 2 _≈⟨_⟩_ _≡⟨_⟩_
 infix 2 _∎
 begin⟨_⟩_ : (X : Setoid ℓ₀ ℓ₀) → {x y : Setoid.Carrier X} → EqR._IsRelatedTo_ X x y → X ∋ x ≈ y
 begin⟨_⟩_ X p = EqR.begin_ X p
 _∎ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → EqR._IsRelatedTo_ X x x
 _∎ {X} = EqR._∎ X
 _≈⟨_⟩_ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → X ∋ x ≈ y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
 _≈⟨_⟩_ {X} = EqR._≈⟨_⟩_ X

 _≡⟨_⟩_ : {X : Setoid ℓ₀ ℓ₀} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → x ≡ y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
 _≡⟨_⟩_ {X} = EqR._≡⟨_⟩_ X

lemma-1 : {m n : ℕ} → (f : Fin n → Carrier) → (is : Vec (Fin n) m) → assoc is (map f is) ≡ just (restrict f (toList is))
lemma-1 f []        = refl
lemma-1 f (i ∷ is′) = begin
  (assoc is′ (map f is′) >>= checkInsert i (f i))
    ≡⟨ cong (λ m → m >>= checkInsert i (f i)) (lemma-1 f is′) ⟩
  checkInsert i (f i) (restrict f (toList is′))
    ≡⟨ lemma-checkInsert-restrict f i (toList is′) ⟩
  just (restrict f (toList (i ∷ is′))) ∎
  where open ≡-Reasoning

lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → MaybeSetoid A.setoid ∋ lookupM i h ≈ just x
lemma-lookupM-assoc i is x xs h    p with assoc is xs
lemma-lookupM-assoc i is x xs h    () | nothing
lemma-lookupM-assoc i is x xs h    p | just h' with checkInsert i x h' | insertionresult i x h'
lemma-lookupM-assoc i is x xs .h refl | just h | ._ | same x' x≈x' pl = begin
  lookupM i h
    ≡⟨ pl ⟩
  just x'
    ≈⟨ MaybeEq.just (Setoid.sym A.setoid x≈x') ⟩
  just x ∎
  where open EqR (MaybeSetoid A.setoid)
lemma-lookupM-assoc i is x xs ._ refl | just h' | ._ | new _ =  Setoid.reflexive (MaybeSetoid A.setoid) (lemma-lookupM-insert i x h')
lemma-lookupM-assoc i is x xs h () | just h' | ._ | wrong _ _ _

_in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set
_in-domain-of_ is h = All (λ i → ∃ λ x → lookupM i h ≡ just x) is

lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (toList is) in-domain-of h
lemma-assoc-domain []         []         h ph = Data.List.All.[]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] with checkInsert i' x' h' | inspect (checkInsert i' x') h' | insertionresult i' x' h'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') .h refl | just h | [ ph' ] | ._ | _ | same x _ pl = All._∷_ (x , pl) (lemma-assoc-domain is' xs' h ph')
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') ._ refl | just h' | [ ph' ] | ._ | [ cI≡ ] | new _ = All._∷_
  (x' , lemma-lookupM-insert i' x' h')
  (Data.List.All.map
    (λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' (insert i' x' h') (proj₂ p) cI≡)
    (lemma-assoc-domain is' xs' h' ph'))
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | just h' | [ ph' ] | ._ | _ | wrong _ _ _

lemma-map-lookupM-assoc : {m : ℕ} → (i : Fin m) → (x : Carrier) → (h : FinMapMaybe m Carrier) → (h' : FinMapMaybe m Carrier) → checkInsert i x h' ≡ just h → {n : ℕ} → (js : Vec (Fin m) n) → (toList js) in-domain-of h' → map (flip lookupM h) js ≡ map (flip lookupM h') js
lemma-map-lookupM-assoc i x h h' ph [] pj = refl
lemma-map-lookupM-assoc i x h h' ph (j ∷ js) (Data.List.All._∷_ (x' , pl) pj) = cong₂ _∷_
  (trans (lemma-lookupM-checkInsert j i x' x h' h pl ph) (sym pl))
  (lemma-map-lookupM-assoc i x h h' ph js pj)

lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is v ≡ just h → VecISetoid (MaybeSetoid A.setoid) at _ ∋ map (flip lookupM h) is ≈ map just v
lemma-2 []       []       h p = ISetoid.refl (VecISetoid (MaybeSetoid A.setoid))
lemma-2 (i ∷ is) (x ∷ xs) h p with assoc is xs | inspect (assoc is) xs
lemma-2 (i ∷ is) (x ∷ xs) h () | nothing | _
lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin
  lookupM i h ∷ map (flip lookupM h) is
    ≈⟨ VecEq._∷-cong_ (lemma-lookupM-assoc i is x xs h (trans (cong (flip _>>=_ (checkInsert i x)) ir) p)) (ISetoid.refl (VecISetoid (MaybeSetoid A.setoid))) ⟩
  just x ∷ map (flip lookupM h) is
    ≡⟨  cong (_∷_ (just x)) (lemma-map-lookupM-assoc i x h h' p is (lemma-assoc-domain is xs h' ir)) ⟩
  just x ∷ map (flip lookupM h') is
    ≈⟨ VecEq._∷-cong_ (Setoid.refl (MaybeSetoid A.setoid)) (lemma-2 is xs h' ir) ⟩
  just x ∷ map just xs ∎
  where open EqR (VecISetoid (MaybeSetoid A.setoid) at _)

lemma-map-denumerate-enumerate : {m : ℕ} → (as : Vec Carrier m) → map (denumerate as) (enumerate as) ≡ as
lemma-map-denumerate-enumerate []       = refl
lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin
  map (flip lookupVec (a ∷ as)) (tabulate Fin.suc)
    ≡⟨ cong (map (flip lookupVec (a ∷ as))) (tabulate-∘ Fin.suc id) ⟩
  map (flip lookupVec (a ∷ as)) (map Fin.suc (tabulate id))
    ≡⟨ refl ⟩
  map (flip lookupVec (a ∷ as)) (map Fin.suc (enumerate as))
    ≡⟨ sym (map-∘ _ _ (enumerate as)) ⟩
  map (flip lookupVec (a ∷ as) ∘ Fin.suc) (enumerate as)
    ≡⟨ refl ⟩
  map (denumerate as) (enumerate as)
    ≡⟨ lemma-map-denumerate-enumerate as ⟩
  as ∎)
  where open ≡-Reasoning

theorem-1 : (G : Get) → {m : ℕ} → (s : Vec Carrier m) → bff G s (Get.get G s) ≡ just s
theorem-1 G s = begin
  bff G s (get s)
    ≡⟨ cong (bff G s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩
  bff G s (get (map (denumerate s) (enumerate s)))
    ≡⟨ cong (bff G s) (free-theorem (denumerate s) (enumerate s)) ⟩
  bff G s (map (denumerate s) (get (enumerate s)))
    ≡⟨ refl ⟩
  (h′↦r ∘ h↦h′) (assoc (get (enumerate s)) (map (denumerate s) (get (enumerate s))))
    ≡⟨ cong (h′↦r ∘ h↦h′) (lemma-1 (denumerate s) (get (enumerate s))) ⟩
  (h′↦r ∘ h↦h′ ∘ just) (restrict (denumerate s) (toList (get (enumerate s))))
    ≡⟨ refl ⟩
  (h′↦r ∘ just) (union (restrict (denumerate s) (toList (get (enumerate s)))) (delete-many (get (enumerate s)) (fromFunc (denumerate s))))
    ≡⟨ cong (h′↦r ∘ just) (lemma-disjoint-union (denumerate s) (get (enumerate s))) ⟩
  (h′↦r ∘ just) (fromFunc (denumerate s))
    ≡⟨ refl ⟩
  mapMV (flip lookupVec (fromFunc (denumerate s))) (enumerate s)
    ≡⟨ mapMV-cong (lemma-lookupM-fromFunc (denumerate s)) (enumerate s) ⟩
  mapMV (Maybe.just ∘ denumerate s) (enumerate s)
    ≡⟨ mapMV-purity (denumerate s) (enumerate s) ⟩
  just (map (denumerate s) (enumerate s))
    ≡⟨ cong just (lemma-map-denumerate-enumerate s) ⟩
  just s ∎
    where open ≡-Reasoning
          open Get G
          h↦h′ = _<$>_ (flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s))))
          h′↦r = flip _>>=_ (flip mapMV (enumerate s) ∘ flip lookupVec)


lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a
lemma-<$>-just (just x) f<$>ma≡just-b = x , refl
lemma-<$>-just nothing  ()

lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMapMaybe n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map (flip lookupM (union h h')) is ≡ map (flip lookupM h) is
lemma-union-not-used h h' []        p = refl
lemma-union-not-used h h' (i ∷ is') (Data.List.All._∷_ (x , px) p') = cong₂ _∷_ (begin
      lookupM i (union h h')
        ≡⟨ lookup∘tabulate (λ j → maybe′ just (lookupM j h') (lookupM j h)) i ⟩
      maybe′ just (lookupM i h') (lookupM i h)
        ≡⟨ cong (maybe′ just (lookupM i h')) px ⟩
      maybe′ just (lookupM i h') (just x)
        ≡⟨ sym px ⟩
      lookupM i h ∎)
  (lemma-union-not-used h h' is' p')
  where open ≡-Reasoning

lemma->>=-just : {A B : Set} (ma : Maybe A) {f : A → Maybe B} {b : B} → (ma >>= f) ≡ just b → ∃ λ a → ma ≡ just a
lemma->>=-just (just a) p = a , refl
lemma->>=-just nothing  ()

lemma-just-sequence : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v
lemma-just-sequence [] = refl
lemma-just-sequence (x ∷ xs) rewrite lemma-just-sequence xs = refl

lemma-mapM-successful : {A B : Set} {f : A → Maybe B} {n : ℕ} → (v : Vec A n) → {r : Vec B n} → mapMV f v ≡ just r → ∃ λ w → map f v ≡ map just w
lemma-mapM-successful         []      p = [] , refl
lemma-mapM-successful {f = f} (x ∷ xs) p with f x | mapMV f xs | inspect (mapMV f) xs
lemma-mapM-successful         (x ∷ xs) () | nothing | _ | _
lemma-mapM-successful         (x ∷ xs) () | just y | nothing | _
lemma-mapM-successful         (x ∷ xs) p  | just y | just ys | [ p′ ] with lemma-mapM-successful xs p′
lemma-mapM-successful         (x ∷ xs) p  | just y | just ys | [ p′ ] | w , pw = y ∷ w , cong (_∷_ (just y)) pw


lemma-get-mapMV : {A B : Set} {f : A → Maybe B} {n : ℕ} {v : Vec A n} {r : Vec B n} → mapMV f v ≡ just r → (get : Get) → Get.get get <$> mapMV f v ≡ mapMV f (Get.get get v)
lemma-get-mapMV {f = f} {v = v} p G = begin
  get <$> mapMV f v
    ≡⟨ cong (_<$>_ get) (sym (sequence-map f v)) ⟩
  get <$> (sequenceV (map f v))
    ≡⟨ cong (_<$>_ get ∘ sequenceV) (proj₂ wp) ⟩
  get <$> (sequenceV (map just (proj₁ wp)))
    ≡⟨ cong (_<$>_ get) (lemma-just-sequence (proj₁ wp)) ⟩
  get <$> just (proj₁ wp)
    ≡⟨ sym (lemma-just-sequence (get (proj₁ wp))) ⟩
  sequenceV (map just (get (proj₁ wp)))
    ≡⟨ cong sequenceV (sym (free-theorem just (proj₁ wp))) ⟩
  sequenceV (get (map just (proj₁ wp)))
    ≡⟨ cong (sequenceV ∘ get) (sym (proj₂ wp)) ⟩
  sequenceV (get (map f v))
    ≡⟨ cong sequenceV (free-theorem f v) ⟩
  sequenceV (map f (get v))
    ≡⟨ sequence-map f (get v) ⟩
  mapMV f (get v) ∎
  where open ≡-Reasoning
        open Get G
        wp = lemma-mapM-successful v p

sequence-cong : {S : Setoid ℓ₀ ℓ₀} {n : ℕ} {m₁ m₂ : Setoid.Carrier (VecISetoid (MaybeSetoid S) at n)} → VecISetoid (MaybeSetoid S) at _ ∋ m₁ ≈ m₂ → MaybeSetoid (VecISetoid S at n) ∋ sequenceV m₁ ≈ sequenceV m₂
sequence-cong {S}                                       VecEq.[]-cong = Setoid.refl (MaybeSetoid (VecISetoid S at _))
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) with sequenceV xs | sequenceV ys | sequence-cong xs≈ys
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | just sxs | just sys | just p = MaybeEq.just (VecEq._∷-cong_ x≈y p)
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | just sys | ()
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | just sxs | nothing | ()
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _))
sequence-cong {S}                                       (VecEq._∷-cong_ nothing xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _))

theorem-2 : (G : Get) → {m : ℕ} → (v : Vec Carrier (Get.getlen G m)) → (s u : Vec Carrier m) → bff G s v ≡ just u → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v
theorem-2 G v s u p with (lemma->>=-just ((flip union (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (Get.get G (enumerate s)) v)) p)
theorem-2 G v s u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumerate s)) v) ph′)
theorem-2 G v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (VecISetoid A.setoid at _) ⟩
  get <$> (just u)
    ≡⟨ cong (_<$>_ get) (sym p) ⟩
  get <$> (bff G s v)
    ≡⟨ cong (_<$>_ get ∘ flip _>>=_ h′↦r ∘ _<$>_ h↦h′) ph ⟩
  get <$> mapMV (flip lookupM (h↦h′ h)) s′
    ≡⟨ lemma-get-mapMV (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) G ⟩
  mapMV (flip lookupM (h↦h′ h)) (get s′)
    ≡⟨ sym (sequence-map (flip lookupM (h↦h′ h)) (get s′)) ⟩
  sequenceV (map (flip lookupM (h↦h′ h)) (get s′))
    ≡⟨ cong sequenceV (lemma-union-not-used h g′ (get s′) (lemma-assoc-domain (get s′) v h ph)) ⟩
  sequenceV (map (flip lookupM h) (get s′))
    ≈⟨ sequence-cong (lemma-2 (get s′) v h ph) ⟩
  sequenceV (map just v)
    ≡⟨ lemma-just-sequence v ⟩
  just v ∎)
    where open SetoidReasoning
          open Get G
          s′   = enumerate s
          g    = fromFunc (denumerate s)
          g′   = delete-many (get s′) g
          h↦h′ = flip union g′
          h′↦r = flip mapMV s′ ∘ flip lookupM