blob: 15a389cfbef1bd643b6ba0b6ee1c390a9027f135 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
module Bidir where
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Maybe using (Maybe ; nothing ; just ; maybe′)
open import Data.List using (List ; [] ; _∷_ ; map ; length)
open import Data.Vec using (toList ; fromList ; tabulate) renaming (lookup to lookupVec)
open import Function using (id ; _∘_ ; flip)
open import Relation.Nullary using (Dec ; yes ; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.Core using (_≡_ ; refl)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; Reveal_is_)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
open import FinMap
_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B
_>>=_ = flip (flip maybe′ nothing)
fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
fmap f = maybe′ (λ a → just (f a)) nothing
EqInst : Set → Set
EqInst A = (x y : A) → Dec (x ≡ y)
checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
checkInsert eq i b m with lookupM i m
checkInsert eq i b m | just c with eq b c
checkInsert eq i b m | just .b | yes refl = just m
checkInsert eq i b m | just c | no ¬p = nothing
checkInsert eq i b m | nothing = just (insert i b m)
assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A)
assoc _ [] [] = just empty
assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b)
assoc _ _ _ = nothing
lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is))
lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is)
lemma-checkInsert-generate eq f i is | nothing | _ = refl
lemma-checkInsert-generate eq f i is | just x | Reveal_is_.[_] prf with lemma-lookupM-generate i f is x prf
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl with eq (f i) (f i)
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | yes refl = cong just (lemma-insert-same (generate f is) i (f i) prf)
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | no ¬p = contradiction refl ¬p
lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
lemma-1 eq f [] = refl
lemma-1 eq f (i ∷ is′) = begin
(assoc eq (i ∷ is′) (map f (i ∷ is′)))
≡⟨ refl ⟩
(assoc eq is′ (map f is′) >>= checkInsert eq i (f i))
≡⟨ cong (λ m → m >>= checkInsert eq i (f i)) (lemma-1 eq f is′) ⟩
(just (generate f is′) >>= (checkInsert eq i (f i)))
≡⟨ refl ⟩
(checkInsert eq i (f i) (generate f is′))
≡⟨ lemma-checkInsert-generate eq f i is′ ⟩
just (generate f (i ∷ is′)) ∎
lemma-lookupM-assoc : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (is : List (Fin n)) → (x : A) → (xs : List A) → (h : FinMapMaybe n A) → assoc eq (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x
lemma-lookupM-assoc eq i is x xs h p with assoc eq is xs
lemma-lookupM-assoc eq i is x xs h () | nothing
lemma-lookupM-assoc eq i is x xs h p | just h' with lookupM i h' | inspect (lookupM i) h'
lemma-lookupM-assoc eq i is x xs .(insert i x h') refl | just h' | nothing | _ = lemma-lookupM-insert i x h'
lemma-lookupM-assoc eq i is x xs h p | just h' | just y | _ with eq x y
lemma-lookupM-assoc eq i is x xs h () | just h' | just y | _ | no ¬prf
lemma-lookupM-assoc eq i is x xs h p | just h' | just .x | Reveal_is_.[_] p' | yes refl = begin
lookupM i h
≡⟨ cong (lookupM i) (lemma-from-just (sym p)) ⟩
lookupM i h'
≡⟨ p' ⟩
just x ∎
lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → assoc eq is v ≡ just h → map (flip lookupM h) is ≡ map just v
lemma-2 eq [] [] h p = refl
lemma-2 eq [] (x ∷ xs) h ()
lemma-2 eq (x ∷ xs) [] h ()
lemma-2 eq (i ∷ is) (x ∷ xs) h p with assoc eq is xs | inspect (assoc eq is) xs
lemma-2 eq (i ∷ is) (x ∷ xs) h () | nothing | _
lemma-2 eq (i ∷ is) (x ∷ xs) h p | just h' | Reveal_is_.[_] ir = begin
map (flip lookupM h) (i ∷ is)
≡⟨ refl ⟩
lookup i h ∷ map (flip lookupM h) is
≡⟨ cong (flip _∷_ (map (flip lookup h) is)) (lemma-lookupM-assoc eq i is x xs h (begin
assoc eq (i ∷ is) (x ∷ xs)
≡⟨ cong (flip _>>=_ (checkInsert eq i x)) ir ⟩
checkInsert eq i x h'
≡⟨ p ⟩
just h ∎) ) ⟩
just x ∷ map (flip lookupM h) is
≡⟨ cong (_∷_ (just x)) {!!} ⟩
just x ∷ map (flip lookupM h') is
≡⟨ cong (_∷_ (just x)) (lemma-2 eq is xs h' ir) ⟩
just x ∷ map just xs
≡⟨ refl ⟩
map just (x ∷ xs) ∎
enumerate : {A : Set} → (l : List A) → List (Fin (length l))
enumerate l = toList (tabulate id)
bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B))
bff get eq s v = let s′ = enumerate s
g = fromFunc (λ f → lookupVec f (fromList s))
h = assoc eq (get s′) v
h′ = fmap (flip union g) h
in fmap (flip map s′ ∘ flip lookup) h′
postulate
free-theorem-list-list : {β γ : Set} → (get : {α : Set} → List α → List α) → (f : β → γ) → (l : List β) → get (map f l) ≡ map f (get l)
theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : EqInst τ) → (s : List τ) → bff get eq s (get s) ≡ just s
theorem-1 get eq s = {!!}
|