1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
open import Relation.Binary.Core using (Decidable ; _≡_)
module Bidir (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Fin.Props using (_≟_)
open import Data.Maybe using (Maybe ; nothing ; just ; maybe′)
open import Data.List using (List)
open import Data.List.Any using (Any ; any ; here ; there)
open import Data.List.All using (All)
open Data.List.Any.Membership-≡ using (_∈_ ; _∉_)
open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; fromList ; map ; tabulate) renaming (lookup to lookupVec)
open import Data.Vec.Properties using (tabulate-∘ ; lookup∘tabulate ; map-cong ; map-∘)
open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂)
open import Data.Empty using (⊥-elim)
open import Function using (id ; _∘_ ; flip)
open import Relation.Nullary using (yes ; no)
open import Relation.Binary.Core using (refl)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; _≗_ ; trans ; cong₂)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
import FreeTheorems
open FreeTheorems.VecVec using (get-type ; free-theorem)
open import FinMap
import CheckInsert
open CheckInsert Carrier deq
open import BFF using (_>>=_ ; fmap)
open BFF.VecBFF Carrier deq using (assoc ; enumerate ; denumerate ; bff)
lemma-1 : {m n : ℕ} → (f : Fin n → Carrier) → (is : Vec (Fin n) m) → assoc is (map f is) ≡ just (restrict f (toList is))
lemma-1 f [] = refl
lemma-1 f (i ∷ is′) = begin
assoc is′ (map f is′) >>= checkInsert i (f i)
≡⟨ cong (λ m → m >>= checkInsert i (f i)) (lemma-1 f is′) ⟩
checkInsert i (f i) (restrict f (toList is′))
≡⟨ lemma-checkInsert-restrict f i (toList is′) ⟩
just (restrict f (toList (i ∷ is′))) ∎
lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x
lemma-lookupM-assoc i is x xs h p with assoc is xs
lemma-lookupM-assoc i is x xs h () | nothing
lemma-lookupM-assoc i is x xs h p | just h' with checkInsert i x h' | insertionresult i x h'
lemma-lookupM-assoc i is x xs .h refl | just h | ._ | insert-same pl = pl
lemma-lookupM-assoc i is x xs ._ refl | just h' | ._ | insert-new _ = lemma-lookupM-insert i x h'
lemma-lookupM-assoc i is x xs h () | just h' | ._ | insert-wrong _ _ _
lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing
lemma-∉-lookupM-assoc i [] [] .empty refl i∉is = lemma-lookupM-empty i
lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc is' xs' | inspect (assoc is') xs'
lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ]
lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = begin
lookupM i h
≡⟨ sym (lemma-lookupM-checkInsert-other i i' (i∉is ∘ here) x' h' h ph) ⟩
lookupM i h'
≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩
nothing ∎
_in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set
_in-domain-of_ is h = All (λ i → ∃ λ x → lookupM i h ≡ just x) is
lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (toList is) in-domain-of h
lemma-assoc-domain [] [] h ph = Data.List.All.[]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] with checkInsert i' x' h' | inspect (checkInsert i' x') h' | insertionresult i' x' h'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') .h refl | just h | [ ph' ] | ._ | _ | insert-same pl = All._∷_ (x' , pl) (lemma-assoc-domain is' xs' h ph')
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') ._ refl | just h' | [ ph' ] | ._ | [ cI≡ ] | insert-new _ = All._∷_
(x' , lemma-lookupM-insert i' x' h')
(Data.List.All.map
(λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' (insert i' x' h') (proj₂ p) cI≡)
(lemma-assoc-domain is' xs' h' ph'))
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | just h' | [ ph' ] | ._ | _ | insert-wrong _ _ _
lemma-map-lookupM-insert : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (h : FinMapMaybe n Carrier) → i ∉ (toList is) → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is
lemma-map-lookupM-insert i [] x h i∉is = refl
lemma-map-lookupM-insert i (i' ∷ is') x h i∉is = cong₂ _∷_
(sym (lemma-lookupM-insert-other i' i x h (i∉is ∘ here ∘ sym)))
(lemma-map-lookupM-insert i is' x h (i∉is ∘ there))
lemma-map-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → (h' : FinMapMaybe n Carrier) → assoc is xs ≡ just h' → checkInsert i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is
lemma-map-lookupM-assoc i is x xs h h' ph' ph with any (_≟_ i) (toList is)
lemma-map-lookupM-assoc i is x xs h h' ph' ph | yes p with Data.List.All.lookup (lemma-assoc-domain is xs h' ph') p
lemma-map-lookupM-assoc i is x xs h h' ph' ph | yes p | (x'' , p') with lookupM i h'
lemma-map-lookupM-assoc i is x xs h h' ph' ph | yes p | (x'' , refl) | .(just x'') with deq x x''
lemma-map-lookupM-assoc i is x xs h .h ph' refl | yes p | (.x , refl) | .(just x) | yes refl = refl
lemma-map-lookupM-assoc i is x xs h h' ph' () | yes p | (x'' , refl) | .(just x'') | no ¬p
lemma-map-lookupM-assoc i is x xs h h' ph' ph | no ¬p rewrite lemma-∉-lookupM-assoc i is xs h' ph' ¬p = begin
map (flip lookupM h) is
≡⟨ map-cong (λ i'' → cong (lookupM i'') (just-injective (sym ph))) is ⟩
map (flip lookupM (insert i x h')) is
≡⟨ lemma-map-lookupM-insert i is x h' ¬p ⟩
map (flip lookupM h') is ∎
lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is v ≡ just h → map (flip lookupM h) is ≡ map just v
lemma-2 [] [] h p = refl
lemma-2 (i ∷ is) (x ∷ xs) h p with assoc is xs | inspect (assoc is) xs
lemma-2 (i ∷ is) (x ∷ xs) h () | nothing | _
lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin
lookupM i h ∷ map (flip lookupM h) is
≡⟨ cong (flip _∷_ (map (flip lookupM h) is)) (lemma-lookupM-assoc i is x xs h (begin
assoc (i ∷ is) (x ∷ xs)
≡⟨ cong (flip _>>=_ (checkInsert i x)) ir ⟩
checkInsert i x h'
≡⟨ p ⟩
just h ∎) ) ⟩
just x ∷ map (flip lookupM h) is
≡⟨ cong (_∷_ (just x)) (lemma-map-lookupM-assoc i is x xs h h' ir p) ⟩
just x ∷ map (flip lookupM h') is
≡⟨ cong (_∷_ (just x)) (lemma-2 is xs h' ir) ⟩
just x ∷ map just xs ∎
lemma-map-denumerate-enumerate : {m : ℕ} → (as : Vec Carrier m) → map (denumerate as) (enumerate as) ≡ as
lemma-map-denumerate-enumerate [] = refl
lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin
map (flip lookupVec (a ∷ as)) (tabulate Fin.suc)
≡⟨ cong (map (flip lookupVec (a ∷ as))) (tabulate-∘ Fin.suc id) ⟩
map (flip lookupVec (a ∷ as)) (map Fin.suc (tabulate id))
≡⟨ refl ⟩
map (flip lookupVec (a ∷ as)) (map Fin.suc (enumerate as))
≡⟨ sym (map-∘ _ _ (enumerate as)) ⟩
map (flip lookupVec (a ∷ as) ∘ Fin.suc) (enumerate as)
≡⟨ refl ⟩
map (denumerate as) (enumerate as)
≡⟨ lemma-map-denumerate-enumerate as ⟩
as ∎)
theorem-1 : {getlen : ℕ → ℕ} → (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → bff get s (get s) ≡ just s
theorem-1 get s = begin
bff get s (get s)
≡⟨ cong (bff get s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩
bff get s (get (map (denumerate s) (enumerate s)))
≡⟨ cong (bff get s) (free-theorem get (denumerate s) (enumerate s)) ⟩
bff get s (map (denumerate s) (get (enumerate s)))
≡⟨ refl ⟩
(h′↦r ∘ h↦h′) (assoc (get (enumerate s)) (map (denumerate s) (get (enumerate s))))
≡⟨ cong (h′↦r ∘ h↦h′) (lemma-1 (denumerate s) (get (enumerate s))) ⟩
(h′↦r ∘ h↦h′ ∘ just) (restrict (denumerate s) (toList (get (enumerate s))))
≡⟨ refl ⟩
(h′↦r ∘ just) (union (restrict (denumerate s) (toList (get (enumerate s)))) (fromFunc (denumerate s)))
≡⟨ cong (h′↦r ∘ just) (lemma-union-restrict (denumerate s) (toList (get (enumerate s)))) ⟩
(h′↦r ∘ just) (fromFunc (denumerate s))
≡⟨ refl ⟩
just (map (flip lookup (fromFunc (denumerate s))) (enumerate s))
≡⟨ cong just (map-cong (lookup∘tabulate (denumerate s)) (enumerate s)) ⟩
just (map (denumerate s) (enumerate s))
≡⟨ cong just (lemma-map-denumerate-enumerate s) ⟩
just s ∎
where h↦h′ = fmap (flip union (fromFunc (denumerate s)))
h′↦r = fmap (flip map (enumerate s) ∘ flip lookupVec)
lemma-fmap-just : {A B : Set} {f : A → B} {b : B} {ma : Maybe A} → fmap f ma ≡ just b → ∃ λ a → ma ≡ just a
lemma-fmap-just {ma = just x} fmap-f-ma≡just-b = x , refl
lemma-fmap-just {ma = nothing} ()
∷-injective : {A : Set} {n : ℕ} {x y : A} {xs ys : Vec A n} → (x ∷ xs) ≡ (y ∷ ys) → x ≡ y × xs ≡ ys
∷-injective refl = refl , refl
map-just-injective : {A : Set} {n : ℕ} {xs ys : Vec A n} → map Maybe.just xs ≡ map Maybe.just ys → xs ≡ ys
map-just-injective {xs = []} {ys = []} p = refl
map-just-injective {xs = x ∷ xs'} {ys = y ∷ ys'} p with ∷-injective p
map-just-injective {xs = x ∷ xs'} {ys = .x ∷ ys'} p | refl , p' = cong (_∷_ x) (map-just-injective p')
lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMap n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map just (map (flip lookup (union h h')) is) ≡ map (flip lookupM h) is
lemma-union-not-used h h' [] p = refl
lemma-union-not-used h h' (i ∷ is') (All._∷_ (x , px) p') = cong₂ _∷_ (begin
just (lookup i (union h h'))
≡⟨ cong just (lookup∘tabulate (λ j → maybe′ id (lookup j h') (lookupM j h)) i) ⟩
just (maybe′ id (lookup i h') (lookupM i h))
≡⟨ cong just (cong (maybe′ id (lookup i h')) px) ⟩
just (maybe′ id (lookup i h') (just x))
≡⟨ sym px ⟩
lookupM i h ∎)
(lemma-union-not-used h h' is' p')
theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → get u ≡ v
theorem-2 get v s u p with lemma-fmap-just (proj₂ (lemma-fmap-just p))
theorem-2 get v s u p | h , ph = begin
get u
≡⟨ just-injective (begin
fmap get (just u)
≡⟨ cong (fmap get) (sym p) ⟩
fmap get (bff get s v)
≡⟨ cong (fmap get ∘ fmap h′↦r ∘ fmap h↦h′) ph ⟩
fmap get (fmap h′↦r (fmap h↦h′ (just h))) ∎) ⟩
get (map (flip lookup (h↦h′ h)) s′)
≡⟨ free-theorem get (flip lookup (h↦h′ h)) s′ ⟩
map (flip lookup (h↦h′ h)) (get s′)
≡⟨ map-just-injective (begin
map just (map (flip lookup (union h g)) (get s′))
≡⟨ lemma-union-not-used h g (get s′) (lemma-assoc-domain (get s′) v h ph) ⟩
map (flip lookupM h) (get s′)
≡⟨ lemma-2 (get s′) v h ph ⟩
map just v
∎) ⟩
v ∎
where s′ = enumerate s
g = fromFunc (denumerate s)
h↦h′ = flip union g
h′↦r = flip map s′ ∘ flip lookupVec
|