blob: 28534a284f36d47f113262250f32bc5cd789a6b2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
module Bidir where
open import Data.Bool hiding (_≟_)
open import Data.Nat
open import Data.Fin
open import Data.Maybe
open import Data.List hiding (replicate)
open import Data.Vec hiding (map ; zip) renaming (lookup to lookupVec)
open import Data.Product hiding (zip ; map)
open import Function
open import Relation.Nullary
open import Relation.Binary.Core
module FinMap where
FinMapMaybe : ℕ → Set → Set
FinMapMaybe n A = Vec (Maybe A) n
lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A
lookupM = lookupVec
insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A
insert f a m = m [ f ]≔ (just a)
empty : {A : Set} {n : ℕ} → FinMapMaybe n A
empty = replicate nothing
fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A
fromAscList [] = empty
fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)
FinMap : ℕ → Set → Set
FinMap n A = Vec A n
lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A
lookup = lookupVec
fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A
fromFunc = tabulate
union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n A → FinMap n A
union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1))
open FinMap
checkInsert : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
checkInsert eq i b m with lookupM i m
checkInsert eq i b m | just c with eq b c
checkInsert eq i b m | just .b | yes refl = just m
checkInsert eq i b m | just c | no ¬p = nothing
checkInsert eq i b m | nothing = just (insert i b m)
assoc : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → List (Fin n) → List A → Maybe (FinMapMaybe n A)
assoc _ [] [] = just empty
assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs)
assoc _ _ _ = nothing
generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
generate f is = fromAscList (zip is (map f is))
lemma-1 : {τ : Set} {n : ℕ} → (eq : (x y : τ) → Dec (x ≡ y)) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
lemma-1 eq f [] = refl
lemma-1 eq f (i ∷ is′) = {!!}
idrange : (n : ℕ) → List (Fin n)
idrange n = toList (tabulate id)
bff : ({A : Set} → List A → List A) → ({B : Set} → ((x y : B) → Dec (x ≡ y)) → List B → List B → Maybe (List B))
bff get eq s v = let s′ = idrange (length s)
g = fromFunc (λ f → lookupVec f (fromList s))
h = assoc eq (get s′) v
h′ = maybe′ (λ jh → just (union jh g)) nothing h
in maybe′ (λ jh′ → just (map (flip lookup jh′) s′)) nothing h′
|