summaryrefslogtreecommitdiff
path: root/Bidir.agda
blob: 0bc6e20abcf7bc8c7d7d319a0f83ebc3d2f52974 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
module Bidir where

open import Data.Bool hiding (_≟_)
open import Data.Nat
open import Data.Fin
open import Data.Fin.Props renaming (_≟_ to _≟F_)
open import Data.Maybe
open import Data.List hiding (replicate)
open import Data.Vec hiding (map ; zip ; _>>=_) renaming (lookup to lookupVec)
open import Data.Product hiding (zip ; map)
open import Function
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality.≡-Reasoning

_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B
_>>=_ = flip (flip maybe′ nothing)

fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
fmap f = maybe′ (λ a → just (f a)) nothing

module FinMap where

  FinMapMaybe : ℕ → Set → Set
  FinMapMaybe n A = Vec (Maybe A) n

  lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A
  lookupM = lookupVec

  insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A
  insert f a m = m [ f ]≔ (just a)

  empty : {A : Set} {n : ℕ} → FinMapMaybe n A
  empty = replicate nothing

  fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A
  fromAscList []             = empty
  fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)

  FinMap : ℕ → Set → Set
  FinMap n A = Vec A n

  lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A
  lookup = lookupVec

  fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A
  fromFunc = tabulate

  union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n  A → FinMap n A
  union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1))

open FinMap

EqInst : Set → Set
EqInst A = (x y : A) → Dec (x ≡ y)

checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
checkInsert eq i b m with lookupM i m
checkInsert eq i b m | just c with eq b c
checkInsert eq i b m | just .b | yes refl = just m
checkInsert eq i b m | just c  | no ¬p    = nothing
checkInsert eq i b m | nothing = just (insert i b m)

assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A)
assoc _  []       []       = just empty
assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b)
assoc _  _        _        = nothing

generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
generate f is = fromAscList (zip is (map f is))

lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → lookupM f m ≡ just a → m ≡ insert f a m
lemma-insert-same []               ()      a p
lemma-insert-same (.(just a) ∷ xs) zero    a refl = refl
lemma-insert-same (x ∷ xs)         (suc i) a p    = cong (_∷_ x) (lemma-insert-same xs i a p)

lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing
lemma-lookupM-empty zero    = refl
lemma-lookupM-empty (suc i) = lemma-lookupM-empty i

lemma-from-just : {A : Set} → {x y : A} → _≡_ {_} {Maybe A} (just x) (just y) → x ≡ y
lemma-from-just refl = refl

lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → lookupM i (insert i a m) ≡ just a
lemma-lookupM-insert zero    _ (_ ∷ _)  = refl
lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs

lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m)
lemma-lookupM-insert-other zero    zero    a m        p = contradiction refl p
lemma-lookupM-insert-other zero    (suc j) a (x ∷ xs) p = refl
lemma-lookupM-insert-other (suc i) zero    a (x ∷ xs) p = refl
lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (contraposition (cong suc) p)

lemma-lookupM-generate : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → lookupM i (generate f is) ≡ just a → f i ≡ a
lemma-lookupM-generate {A} i f [] a p with begin
  just a
    ≡⟨ sym p ⟩
  lookupM i (generate f [])
    ≡⟨ refl ⟩
  lookupM i empty
    ≡⟨ lemma-lookupM-empty i ⟩
  nothing ∎
lemma-lookupM-generate i f [] a p | ()
lemma-lookupM-generate i f (i' ∷ is) a p with i ≟F i'
lemma-lookupM-generate i f (.i ∷ is) a p | yes refl = lemma-from-just (begin
   just (f i)
     ≡⟨ sym (lemma-lookupM-insert i (f i) (generate f is)) ⟩
   lookupM i (insert i (f i) (generate f is))
     ≡⟨ refl ⟩
   lookupM i (generate f (i ∷ is))
     ≡⟨ p ⟩
   just a ∎)
lemma-lookupM-generate i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-generate i f is a (begin
  lookupM i (generate f is)
    ≡⟨ lemma-lookupM-insert-other i i' (f i') (generate f is) ¬p2 ⟩
  lookupM i (insert i' (f i') (generate f is))
    ≡⟨ refl ⟩
  lookupM i (generate f (i' ∷ is))
    ≡⟨ p ⟩
  just a ∎)

lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is))
lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is)
lemma-checkInsert-generate eq f i is | nothing     | _ = refl
lemma-checkInsert-generate eq f i is | just x      | Reveal_is_.[_] prf with lemma-lookupM-generate i f is x prf
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl with eq (f i) (f i)
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | yes refl = cong just (lemma-insert-same (generate f is) i (f i) prf)
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | no  ¬p   = contradiction refl ¬p

lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
lemma-1 eq f []        = refl
lemma-1 eq f (i ∷ is′) = begin
  (assoc eq (i ∷ is′) (map f (i ∷ is′)))
    ≡⟨ refl ⟩
  (assoc eq is′ (map f is′) >>= checkInsert eq i (f i))
    ≡⟨ cong (λ m → m >>= checkInsert eq i (f i)) (lemma-1 eq f is′) ⟩
  (just (generate f is′) >>= (checkInsert eq i (f i)))
    ≡⟨ refl ⟩
  (checkInsert eq i (f i) (generate f is′))
    ≡⟨ lemma-checkInsert-generate eq f i is′ ⟩
  just (generate f (i ∷ is′)) ∎

lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v
lemma-2 eq []       []       h p = refl
lemma-2 eq []       (x ∷ xs) h ()
lemma-2 eq (x ∷ xs) []       h ()
lemma-2 eq (i ∷ is) (x ∷ xs) h p = {!!}

idrange : (n : ℕ) → List (Fin n)
idrange n = toList (tabulate id)

bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B))
bff get eq s v = let s′ = idrange (length s)
                     g  = fromFunc (λ f → lookupVec f (fromList s))
                     h  = assoc eq (get s′) v
                     h′ = fmap (flip union g) h
                 in fmap (flip map s′ ∘ flip lookup) h′

theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : EqInst τ) → (s : List τ) → bff get eq s (get s) ≡ just s
theorem-1 get eq s = {!!}