blob: d82c40bb88b38c4b4234b6293633da55314d0c04 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
open import Relation.Binary.Core using (Decidable ; _≡_)
module CheckInsert (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Fin.Props using (_≟_)
open import Data.Maybe using (Maybe ; nothing ; just) renaming (setoid to MaybeEq)
open import Data.List using (List ; [] ; _∷_)
open import Data.Vec using () renaming (_∷_ to _∷V_)
open import Data.Vec.Equality using () renaming (module Equality to VecEq)
open import Relation.Nullary using (Dec ; yes ; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Setoid)
open import Relation.Binary.Core using (refl ; _≢_)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) renaming (setoid to PropEq)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
open import FinMap
open import Generic using (maybeEq-from-≡ ; vecIsSetoid)
checkInsert : {n : ℕ} → Fin n → Carrier → FinMapMaybe n Carrier → Maybe (FinMapMaybe n Carrier)
checkInsert i b m with lookupM i m
... | nothing = just (insert i b m)
... | just c with deq b c
... | yes b≡c = just m
... | no b≢c = nothing
data InsertionResult {n : ℕ} (i : Fin n) (x : Carrier) (h : FinMapMaybe n Carrier) : Maybe (FinMapMaybe n Carrier) → Set where
same : lookupM i h ≡ just x → InsertionResult i x h (just h)
new : lookupM i h ≡ nothing → InsertionResult i x h (just (insert i x h))
wrong : (x' : Carrier) → x ≢ x' → lookupM i h ≡ just x' → InsertionResult i x h nothing
insertionresult : {n : ℕ} → (i : Fin n) → (x : Carrier) → (h : FinMapMaybe n Carrier) → InsertionResult i x h (checkInsert i x h)
insertionresult i x h with lookupM i h | inspect (lookupM i) h
insertionresult i x h | just x' | _ with deq x x'
insertionresult i x h | just .x | [ il ] | yes refl = same il
insertionresult i x h | just x' | [ il ] | no x≢x' = wrong x' x≢x' il
insertionresult i x h | nothing | [ il ] = new il
lemma-checkInsert-same : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m
lemma-checkInsert-same i x m p with lookupM i m
lemma-checkInsert-same i x m refl | .(just x) with deq x x
lemma-checkInsert-same i x m refl | .(just x) | yes refl = refl
lemma-checkInsert-same i x m refl | .(just x) | no x≢x = contradiction refl x≢x
lemma-checkInsert-new : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ nothing → checkInsert i x m ≡ just (insert i x m)
lemma-checkInsert-new i x m p with lookupM i m
lemma-checkInsert-new i x m refl | .nothing = refl
lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing
lemma-checkInsert-wrong i x m x' d p with lookupM i m
lemma-checkInsert-wrong i x m x' d refl | .(just x') with deq x x'
lemma-checkInsert-wrong i x m x' d refl | .(just x') | yes q = contradiction q d
lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl
vecSetoidToProp : {A : Set} {n : ℕ} {x y : Setoid.Carrier (vecIsSetoid (MaybeEq (PropEq A)) n)} → Setoid._≈_ (vecIsSetoid (MaybeEq (PropEq A)) n) x y → x ≡ y
vecSetoidToProp VecEq.[]-cong = refl
vecSetoidToProp (just refl VecEq.∷-cong p) = cong (_∷V_ _) (vecSetoidToProp p)
vecSetoidToProp (nothing VecEq.∷-cong p) = cong (_∷V_ _) (vecSetoidToProp p)
lemma-checkInsert-restrict : {n : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷ is))
lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is) | insertionresult i (f i) (restrict f is)
lemma-checkInsert-restrict f i is | ._ | same p = cong just (vecSetoidToProp (lemma-insert-same _ i (f i) (maybeEq-from-≡ p)))
lemma-checkInsert-restrict f i is | ._ | new _ = refl
lemma-checkInsert-restrict f i is | ._ | wrong x fi≢x p = contradiction (lemma-lookupM-restrict i f is x p) fi≢x
lemma-lookupM-checkInsert : {n : ℕ} → (i j : Fin n) → (x y : Carrier) → (h h' : FinMapMaybe n Carrier) → lookupM i h ≡ just x → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x
lemma-lookupM-checkInsert i j x y h h' pl ph' with checkInsert j y h | insertionresult j y h
lemma-lookupM-checkInsert i j x y h .h pl refl | ._ | same _ = pl
lemma-lookupM-checkInsert i j x y h h' pl ph' | ._ | new _ with i ≟ j
lemma-lookupM-checkInsert i .i x y h h' pl ph' | ._ | new pl' | yes refl = lemma-just≢nothing pl pl'
lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | ._ | new _ | no i≢j = begin
lookupM i (insert j y h)
≡⟨ sym (lemma-lookupM-insert-other i j y h i≢j) ⟩
lookupM i h
≡⟨ pl ⟩
just x ∎
lemma-lookupM-checkInsert i j x y h h' pl () | ._ | wrong _ _ _
lemma-lookupM-checkInsert-other : {n : ℕ} → (i j : Fin n) → i ≢ j → (x : Carrier) → (h h' : FinMapMaybe n Carrier) → checkInsert j x h ≡ just h' → lookupM i h ≡ lookupM i h'
lemma-lookupM-checkInsert-other i j i≢j x h h' ph' with lookupM j h
lemma-lookupM-checkInsert-other i j i≢j x h h' ph' | just y with deq x y
lemma-lookupM-checkInsert-other i j i≢j x h .h refl | just .x | yes refl = refl
lemma-lookupM-checkInsert-other i j i≢j x h h' () | just y | no x≢y
lemma-lookupM-checkInsert-other i j i≢j x h .(insert j x h) refl | nothing = lemma-lookupM-insert-other i j x h i≢j
|