blob: c22a68dc6e0602aa8f3e57cf1cd2fb0166bd0c2a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
module FreeTheorems where
open import Level using () renaming (zero to ℓ₀)
open import Data.Nat using (ℕ)
open import Data.List using (List ; map)
open import Data.Vec using (Vec) renaming (map to mapV)
open import Function using (_∘_)
open import Function.Equality using (_⟶_ ; _⟨$⟩_)
open import Function.Injection using (module Injection) renaming (Injection to _↪_)
open import Relation.Binary.PropositionalEquality using (_≗_ ; cong) renaming (setoid to EqSetoid)
open import Relation.Binary using (Setoid)
open Injection using (to)
open import Generic using (≡-to-Π)
module ListList where
get-type : Set₁
get-type = {A : Set} → List A → List A
postulate
free-theorem : (get : get-type) → {α β : Set} → (f : α → β) → get ∘ map f ≗ map f ∘ get
module VecVec where
get-type : (ℕ → ℕ) → Set₁
get-type getlen = {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n)
free-theorem-type : Set₁
free-theorem-type = {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get
postulate
free-theorem : free-theorem-type
module PartialVecVec where
get-type : {I : Setoid ℓ₀ ℓ₀} → (I ↪ (EqSetoid ℕ)) → (I ⟶ (EqSetoid ℕ)) → Set₁
get-type {I} gl₁ gl₂ = {A : Set} {i : Setoid.Carrier I} → Vec A (to gl₁ ⟨$⟩ i) → Vec A (gl₂ ⟨$⟩ i)
postulate
free-theorem : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ (EqSetoid ℕ)) → (gl₂ : I ⟶ (EqSetoid ℕ)) (get : get-type gl₁ gl₂) → {α β : Set} → (f : α → β) → {i : Setoid.Carrier I} → get {_} {i} ∘ mapV f ≗ mapV f ∘ get
open VecVec using () renaming (free-theorem-type to VecVec-free-theorem-type)
VecVec-free-theorem : VecVec-free-theorem-type
VecVec-free-theorem {getlen} get = free-theorem Function.Injection.id (≡-to-Π getlen) get
|