blob: 3f69627c7278af221a8f472b65f27dd185fe2bc5 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
module Instances where
open import Level using () renaming (zero to ℓ₀)
open import Category.Functor using (RawFunctor)
open import Data.Maybe as M using (Maybe)
open import Data.Nat using (ℕ)
open import Data.Product using (_×_ ; _,_ ; proj₁ ; proj₂)
open import Data.Vec using (Vec)
import Data.Vec.Equality
open Data.Vec.Equality.PropositionalEquality using () renaming (to-≡ to VecEq-to-≡)
open import Function using (_∘_ ; id)
open import Relation.Binary using (Setoid ; module Setoid)
open import Relation.Binary.Indexed using (_at_) renaming (Setoid to ISetoid)
open import Relation.Binary.PropositionalEquality as P using (_≡_ ; _≗_ ; module ≡-Reasoning)
open Setoid using () renaming (_≈_ to _∋_≈_)
open import Generic using (VecISetoid)
open import Structures using (Functor ; Shaped ; module Shaped)
MaybeFunctor : Functor Maybe
MaybeFunctor = record
{ rawfunctor = M.functor
; isFunctor = record
{ cong = cong
; identity = identity
; composition = composition
} }
where _<$>_ : {α β : Set} → (α → β) → Maybe α → Maybe β
_<$>_ = RawFunctor._<$>_ M.functor
cong : {α β : Set} {g h : α → β} → g ≗ h → _<$>_ g ≗ _<$>_ h
cong g≗h (M.just x) = P.cong M.just (g≗h x)
cong g≗h M.nothing = P.refl
identity : {α : Set} → _<$>_ {α} id ≗ id
identity (M.just x) = P.refl
identity M.nothing = P.refl
composition : {α β γ : Set} → (g : β → γ) → (h : α → β) → _<$>_ (g ∘ h) ≗ _<$>_ g ∘ _<$>_ h
composition g h (M.just x) = P.refl
composition g h M.nothing = P.refl
VecShaped : Shaped ℕ Vec
VecShaped = record
{ arity = id
; content = id
; fill = λ _ → id
; isShaped = record
{ content-fill = λ _ → P.refl
; fill-content = λ _ _ → P.refl
} }
ShapedISetoid : (S : Setoid ℓ₀ ℓ₀) {C : Set → (Setoid.Carrier S) → Set} → Shaped (Setoid.Carrier S) C → Setoid ℓ₀ ℓ₀ → ISetoid (Setoid.Carrier S) ℓ₀ ℓ₀
ShapedISetoid S {C} ShapeT α = record
{ Carrier = C (Setoid.Carrier α)
; _≈_ = λ {s₁} {s₂} c₁ c₂ → S ∋ s₁ ≈ s₂ × ISetoid._≈_ (VecISetoid α) (content c₁) (content c₂)
; isEquivalence = record
{ refl = Setoid.refl S , ISetoid.refl (VecISetoid α)
; sym = λ p → Setoid.sym S (proj₁ p) , ISetoid.sym (VecISetoid α) (proj₂ p)
; trans = λ p q → Setoid.trans S (proj₁ p) (proj₁ q) , ISetoid.trans (VecISetoid α) (proj₂ p) (proj₂ q)
} } where open Shaped ShapeT
Shaped≈-to-≡ : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → (α : Set) → {s : S} {x y : C α s} → ShapedISetoid (P.setoid S) ShapeT (P.setoid α) at s ∋ x ≈ y → x ≡ y
Shaped≈-to-≡ ShapeT α {s} {x} {y} (shape≈ , content≈) = begin
x
≡⟨ P.sym (content-fill x) ⟩
fill s (content x)
≡⟨ P.cong (fill s) (VecEq-to-≡ content≈) ⟩
fill s (content y)
≡⟨ content-fill y ⟩
y ∎
where open ≡-Reasoning
open Shaped ShapeT
|