blob: 1a8fd64d6f06f74f060cd269534f55c40c02865e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
module Structures where
open import Category.Functor using (RawFunctor ; module RawFunctor)
open import Category.Monad using (module RawMonad)
open import Data.Maybe using (Maybe) renaming (monad to MaybeMonad)
open import Data.Nat using (ℕ)
open import Data.Vec as V using (Vec)
import Data.Vec.Properties as VP
open import Function using (_∘_ ; flip ; id)
open import Function.Equality using (_⟶_ ; _⇨_ ; _⟨$⟩_)
open import Relation.Binary using (_Preserves_⟶_)
open import Relation.Binary.PropositionalEquality as P using (_≗_ ; _≡_ ; module ≡-Reasoning)
open import Generic using (sequenceV)
record IsFunctor (F : Set → Set) (f : {α β : Set} → (α → β) → F α → F β) : Set₁ where
field
cong : {α β : Set} → f {α} {β} Preserves _≗_ ⟶ _≗_
identity : {α : Set} → f {α} id ≗ id
composition : {α β γ : Set} → (g : β → γ) → (h : α → β) →
f (g ∘ h) ≗ f g ∘ f h
isCongruence : {α β : Set} → (P.setoid α ⇨ P.setoid β) ⟶ P.setoid (F α) ⇨ P.setoid (F β)
isCongruence {α} {β} = record
{ _⟨$⟩_ = λ g → record
{ _⟨$⟩_ = f (_⟨$⟩_ g)
; cong = P.cong (f (_⟨$⟩_ g))
}
; cong = λ {g} {h} g≗h {x} x≡y → P.subst (λ z → f (_⟨$⟩_ g) x ≡ f (_⟨$⟩_ h) z) x≡y (cong (λ _ → g≗h P.refl) x)
}
record Functor (f : Set → Set) : Set₁ where
field
rawfunctor : RawFunctor f
isFunctor : IsFunctor f (RawFunctor._<$>_ rawfunctor)
open RawFunctor rawfunctor public
open IsFunctor isFunctor public
record IsShaped (S : Set)
(C : Set → S → Set)
(arity : S → ℕ)
(content : {α : Set} {s : S} → C α s → Vec α (arity s))
(fill : {α : Set} → (s : S) → Vec α (arity s) → C α s)
: Set₁ where
field
content-fill : {α : Set} {s : S} → (c : C α s) → fill s (content c) ≡ c
fill-content : {α : Set} → (s : S) → (v : Vec α (arity s)) → content (fill s v) ≡ v
fmap : {α β : Set} → (f : α → β) → {s : S} → C α s → C β s
fmap f {s} c = fill s (V.map f (content c))
isFunctor : (s : S) → IsFunctor (flip C s) (λ f → fmap f)
isFunctor s = record
{ cong = λ g≗h c → P.cong (fill s) (VP.map-cong g≗h (content c))
; identity = λ c → begin
fill s (V.map id (content c))
≡⟨ P.cong (fill s) (VP.map-id (content c)) ⟩
fill s (content c)
≡⟨ content-fill c ⟩
c ∎
; composition = λ g h c → P.cong (fill s) (begin
V.map (g ∘ h) (content c)
≡⟨ VP.map-∘ g h (content c) ⟩
V.map g (V.map h (content c))
≡⟨ P.cong (V.map g) (P.sym (fill-content s (V.map h (content c)))) ⟩
V.map g (content (fill s (V.map h (content c)))) ∎)
} where open ≡-Reasoning
fmap-content : {α β : Set} → (f : α → β) → {s : S} → content {β} {s} ∘ fmap f ≗ V.map f ∘ content
fmap-content f c = fill-content _ (V.map f (content c))
fill-fmap : {α β : Set} → (f : α → β) → (s : S) → fmap f ∘ fill s ≗ fill s ∘ V.map f
fill-fmap f s v = P.cong (fill s ∘ V.map f) (fill-content s v)
sequence : {α : Set} {s : S} → C (Maybe α) s → Maybe (C α s)
sequence {s = s} c = fill s <$> sequenceV (content c)
where open RawMonad MaybeMonad
record Shaped (S : Set) (C : Set → S → Set) : Set₁ where
field
arity : S → ℕ
content : {α : Set} {s : S} → C α s → Vec α (arity s)
fill : {α : Set} → (s : S) → Vec α (arity s) → C α s
isShaped : IsShaped S C arity content fill
open IsShaped isShaped public
|