diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-02-04 10:32:34 +0100 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-02-04 10:32:34 +0100 |
commit | 257665f2910296c6e87113d2f7a418e1f83b33f6 (patch) | |
tree | 5f179250edf342f351d679f263c22d97d6496811 | |
parent | e227314c11a17efa2e41ee8756041c4e5b747792 (diff) | |
parent | 6eff9c9c93e942ac4bf39cd6d62c0ae0d601c1ae (diff) | |
download | bidiragda-257665f2910296c6e87113d2f7a418e1f83b33f6.tar.gz |
Merge branch feature-get-record into feature-partial-getlen
These two features heavily interconnect. As such it makes sense to
integrate them properly. This non-trivial merge does that work. Compared
to feature-partial-getlen a few definitions moved from FreeTheorems.agda
to GetTypes.agda. Many types changed compared to both branches.
Conflicts:
BFF.agda
Bidir.agda
FreeTheorems.agda
Precond.agda
conflict in GetTypes.agda not detected by merge
-rw-r--r-- | BFF.agda | 18 | ||||
-rw-r--r-- | Bidir.agda | 42 | ||||
-rw-r--r-- | Everything.agda | 12 | ||||
-rw-r--r-- | FreeTheorems.agda | 23 | ||||
-rw-r--r-- | GetTypes.agda | 45 | ||||
-rw-r--r-- | LiftGet.agda | 100 | ||||
-rw-r--r-- | Makefile | 8 | ||||
-rw-r--r-- | Precond.agda | 14 |
8 files changed, 212 insertions, 50 deletions
@@ -20,10 +20,10 @@ open Injection using (to) open import FinMap open import Generic using (mapMV ; ≡-to-Π) import CheckInsert -import FreeTheorems +open import GetTypes using (VecVec-to-PartialVecVec) module PartialVecBFF (A : DecSetoid ℓ₀ ℓ₀) where - open FreeTheorems.PartialVecVec public using (get-type) + open GetTypes.PartialVecVec public using (Get) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) open CheckInsert A @@ -37,10 +37,10 @@ module PartialVecBFF (A : DecSetoid ℓ₀ ℓ₀) where denumerate : {n : ℕ} → Vec Carrier n → Fin n → Carrier denumerate = flip lookupV - bff : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ (EqSetoid ℕ)) → (gl₂ : I ⟶ EqSetoid ℕ) → get-type gl₁ gl₂ → ({i : Setoid.Carrier I} → Vec Carrier (to gl₁ ⟨$⟩ i) → Vec Carrier (gl₂ ⟨$⟩ i) → Maybe (Vec Carrier (to gl₁ ⟨$⟩ i))) - bff gl₁ gl₂ get s v = - let s′ = enumerate s - t′ = get s′ + + bff : (G : Get) → ({i : Setoid.Carrier (Get.I G)} → Vec Carrier (to (Get.gl₁ G) ⟨$⟩ i) → Vec Carrier ((Get.gl₂ G) ⟨$⟩ i) → Maybe (Vec Carrier (to (Get.gl₁ G) ⟨$⟩ i))) + bff G s v = let s′ = enumerate s + t′ = Get.get G s′ g = fromFunc (denumerate s) g′ = delete-many t′ g h = assoc t′ v @@ -48,11 +48,11 @@ module PartialVecBFF (A : DecSetoid ℓ₀ ℓ₀) where in h′ >>= flip mapMV s′ ∘ flip lookupV module VecBFF (A : DecSetoid ℓ₀ ℓ₀) where - open FreeTheorems.VecVec public using (get-type) + open GetTypes.VecVec public using (Get) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) open CheckInsert A open PartialVecBFF A public using (assoc ; enumerate ; denumerate) - bff : {getlen : ℕ → ℕ} → (get-type getlen) → ({n : ℕ} → Vec Carrier n → Vec Carrier (getlen n) → Maybe (Vec Carrier n)) - bff {getlen} get s v = PartialVecBFF.bff A id↪ (≡-to-Π getlen) get {_} s v + bff : (G : Get) → ({n : ℕ} → Vec Carrier n → Vec Carrier (Get.getlen G n) → Maybe (Vec Carrier n)) + bff G = PartialVecBFF.bff A (VecVec-to-PartialVecVec G) @@ -27,8 +27,8 @@ open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; open import Relation.Binary using (Setoid ; module Setoid ; module DecSetoid) import Relation.Binary.EqReasoning as EqR -import FreeTheorems -open FreeTheorems.PartialVecVec using (get-type ; free-theorem) +import GetTypes +open GetTypes.PartialVecVec using (Get ; module Get) open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; sequence-map ; VecISetoid) open import FinMap import CheckInsert @@ -128,13 +128,13 @@ lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin as ∎) where open ≡-Reasoning -theorem-1 : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) → (get : get-type gl₁ gl₂) → {i : Setoid.Carrier I} → (s : Vec Carrier (to gl₁ ⟨$⟩ i)) → bff gl₁ gl₂ get s (get s) ≡ just s -theorem-1 gl₁ gl₂ get s = begin - bff gl₁ gl₂ get s (get s) - ≡⟨ cong (bff gl₁ gl₂ get s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ - bff gl₁ gl₂ get s (get (map (denumerate s) (enumerate s))) - ≡⟨ cong (bff gl₁ gl₂ get s) (free-theorem gl₁ gl₂ get (denumerate s) (enumerate s)) ⟩ - bff gl₁ gl₂ get s (map (denumerate s) (get (enumerate s))) +theorem-1 : (G : Get) → {i : Setoid.Carrier (Get.I G)} → (s : Vec Carrier (to (Get.gl₁ G) ⟨$⟩ i)) → bff G s (Get.get G s) ≡ just s +theorem-1 G s = begin + bff G s (get s) + ≡⟨ cong (bff G s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ + bff G s (get (map (denumerate s) (enumerate s))) + ≡⟨ cong (bff G s) (free-theorem (denumerate s) (enumerate s)) ⟩ + bff G s (map (denumerate s) (get (enumerate s))) ≡⟨ refl ⟩ (h′↦r ∘ h↦h′) (assoc (get (enumerate s)) (map (denumerate s) (get (enumerate s)))) ≡⟨ cong (h′↦r ∘ h↦h′) (lemma-1 (denumerate s) (get (enumerate s))) ⟩ @@ -154,6 +154,7 @@ theorem-1 gl₁ gl₂ get s = begin ≡⟨ cong just (lemma-map-denumerate-enumerate s) ⟩ just s ∎ where open ≡-Reasoning + open Get G h↦h′ = _<$>_ (flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) h′↦r = flip _>>=_ (flip mapMV (enumerate s) ∘ flip lookupVec) @@ -191,9 +192,8 @@ lemma-mapM-successful (x ∷ xs) () | just y | nothing | _ lemma-mapM-successful (x ∷ xs) p | just y | just ys | [ p′ ] with lemma-mapM-successful xs p′ lemma-mapM-successful (x ∷ xs) p | just y | just ys | [ p′ ] | w , pw = y ∷ w , cong (_∷_ (just y)) pw - -lemma-get-mapMV : {A B : Set} {f : A → Maybe B} {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) → {i : Setoid.Carrier I} {v : Vec A (to gl₁ ⟨$⟩ i)} {r : Vec B (to gl₁ ⟨$⟩ i)} → mapMV f v ≡ just r → (get : get-type gl₁ gl₂) → get <$> mapMV f v ≡ mapMV f (get v) -lemma-get-mapMV {f = f} gl₁ gl₂ {v = v} p get = let w , pw = lemma-mapM-successful v p in begin +lemma-get-mapMV : {A B : Set} {f : A → Maybe B} → (G : Get) → {i : Setoid.Carrier (Get.I G)} {v : Vec A (to (Get.gl₁ G) ⟨$⟩ i)} {r : Vec B (to (Get.gl₁ G) ⟨$⟩ i)} → mapMV f v ≡ just r → Get.get G <$> mapMV f v ≡ mapMV f (Get.get G v) +lemma-get-mapMV {f = f} G {v = v} p = let w , pw = lemma-mapM-successful v p in begin get <$> mapMV f v ≡⟨ cong (_<$>_ get) (sym (sequence-map f v)) ⟩ get <$> (sequenceV (map f v)) @@ -203,15 +203,16 @@ lemma-get-mapMV {f = f} gl₁ gl₂ {v = v} p get = let w , pw = lemma-mapM-succ get <$> just w ≡⟨ sym (lemma-just-sequence (get w)) ⟩ sequenceV (map just (get w)) - ≡⟨ cong sequenceV (sym (free-theorem gl₁ gl₂ get just w)) ⟩ + ≡⟨ cong sequenceV (sym (free-theorem just w)) ⟩ sequenceV (get (map just w)) ≡⟨ cong (sequenceV ∘ get) (sym pw) ⟩ sequenceV (get (map f v)) - ≡⟨ cong sequenceV (free-theorem gl₁ gl₂ get f v) ⟩ + ≡⟨ cong sequenceV (free-theorem f v) ⟩ sequenceV (map f (get v)) ≡⟨ sequence-map f (get v) ⟩ mapMV f (get v) ∎ where open ≡-Reasoning + open Get G sequence-cong : {S : Setoid ℓ₀ ℓ₀} {n : ℕ} {m₁ m₂ : Setoid.Carrier (VecISetoid (MaybeSetoid S) at n)} → VecISetoid (MaybeSetoid S) at _ ∋ m₁ ≈ m₂ → MaybeSetoid (VecISetoid S at n) ∋ sequenceV m₁ ≈ sequenceV m₂ sequence-cong {S} VecEq.[]-cong = Setoid.refl (MaybeSetoid (VecISetoid S at _)) @@ -220,16 +221,16 @@ sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (just x≈y VecE sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (just x≈y VecEq.∷-cong xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _)) sequence-cong {S} (nothing VecEq.∷-cong xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _)) -theorem-2 : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) → (get : get-type gl₁ gl₂) → {i : Setoid.Carrier I} → (v : Vec Carrier (gl₂ ⟨$⟩ i)) → (s u : Vec Carrier (to gl₁ ⟨$⟩ i)) → bff gl₁ gl₂ get s v ≡ just u → VecISetoid A.setoid at _ ∋ get u ≈ v -theorem-2 gl₁ gl₂ get v s u p with (lemma->>=-just ((flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (get (enumerate s)) v)) p) -theorem-2 gl₁ gl₂ get v s u p | h′ , ph′ with (lemma-<$>-just (assoc (get (enumerate s)) v) ph′) -theorem-2 gl₁ gl₂ get v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (VecISetoid A.setoid at _) ⟩ +theorem-2 : (G : Get) → {i : Setoid.Carrier (Get.I G)} → (v : Vec Carrier (Get.gl₂ G ⟨$⟩ i)) → (s u : Vec Carrier (to (Get.gl₁ G) ⟨$⟩ i)) → bff G s v ≡ just u → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v +theorem-2 G v s u p with (lemma->>=-just ((flip union (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (Get.get G (enumerate s)) v)) p) +theorem-2 G v s u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumerate s)) v) ph′) +theorem-2 G v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (VecISetoid A.setoid at _) ⟩ get <$> (just u) ≡⟨ cong (_<$>_ get) (sym p) ⟩ - get <$> (bff gl₁ gl₂ get s v) + get <$> (bff G s v) ≡⟨ cong (_<$>_ get ∘ flip _>>=_ h′↦r ∘ _<$>_ h↦h′) ph ⟩ get <$> mapMV (flip lookupM (h↦h′ h)) s′ - ≡⟨ lemma-get-mapMV gl₁ gl₂ (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) get ⟩ + ≡⟨ lemma-get-mapMV G (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) ⟩ mapMV (flip lookupM (h↦h′ h)) (get s′) ≡⟨ sym (sequence-map (flip lookupM (h↦h′ h)) (get s′)) ⟩ sequenceV (map (flip lookupM (h↦h′ h)) (get s′)) @@ -240,6 +241,7 @@ theorem-2 gl₁ gl₂ get v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ ≡⟨ lemma-just-sequence v ⟩ just v ∎) where open SetoidReasoning + open Get G s′ = enumerate s g = fromFunc (denumerate s) g′ = delete-many (get s′) g diff --git a/Everything.agda b/Everything.agda new file mode 100644 index 0000000..7399254 --- /dev/null +++ b/Everything.agda @@ -0,0 +1,12 @@ +-- The sole purpose of this module is to ease compilation of everything. +module Everything where + +import Generic +import FinMap +import CheckInsert +import GetTypes +import FreeTheorems +import BFF +import Bidir +import LiftGet +import Precond diff --git a/FreeTheorems.agda b/FreeTheorems.agda index c22a68d..2181163 100644 --- a/FreeTheorems.agda +++ b/FreeTheorems.agda @@ -13,31 +13,40 @@ open Injection using (to) open import Generic using (≡-to-Π) +import GetTypes + module ListList where get-type : Set₁ get-type = {A : Set} → List A → List A + open GetTypes.ListList public + postulate free-theorem : (get : get-type) → {α β : Set} → (f : α → β) → get ∘ map f ≗ map f ∘ get + assume-get : get-type → Get + assume-get get = record { get = get; free-theorem = free-theorem get } + module VecVec where get-type : (ℕ → ℕ) → Set₁ get-type getlen = {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n) - free-theorem-type : Set₁ - free-theorem-type = {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get + open GetTypes.VecVec public postulate - free-theorem : free-theorem-type + free-theorem : {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get + + assume-get : {getlen : ℕ → ℕ} → (get : get-type getlen) → Get + assume-get {getlen} get = record { getlen = getlen; get = get; free-theorem = free-theorem get } module PartialVecVec where get-type : {I : Setoid ℓ₀ ℓ₀} → (I ↪ (EqSetoid ℕ)) → (I ⟶ (EqSetoid ℕ)) → Set₁ get-type {I} gl₁ gl₂ = {A : Set} {i : Setoid.Carrier I} → Vec A (to gl₁ ⟨$⟩ i) → Vec A (gl₂ ⟨$⟩ i) + open GetTypes.PartialVecVec public + postulate free-theorem : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ (EqSetoid ℕ)) → (gl₂ : I ⟶ (EqSetoid ℕ)) (get : get-type gl₁ gl₂) → {α β : Set} → (f : α → β) → {i : Setoid.Carrier I} → get {_} {i} ∘ mapV f ≗ mapV f ∘ get - open VecVec using () renaming (free-theorem-type to VecVec-free-theorem-type) - - VecVec-free-theorem : VecVec-free-theorem-type - VecVec-free-theorem {getlen} get = free-theorem Function.Injection.id (≡-to-Π getlen) get + assume-get : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ (EqSetoid ℕ)) → (gl₂ : I ⟶ (EqSetoid ℕ)) (get : get-type gl₁ gl₂) → Get + assume-get {I} gl₁ gl₂ get = record { I = I; gl₁ = gl₁; gl₂ = gl₂; get = get; free-theorem = free-theorem gl₁ gl₂ get } diff --git a/GetTypes.agda b/GetTypes.agda new file mode 100644 index 0000000..a52ec24 --- /dev/null +++ b/GetTypes.agda @@ -0,0 +1,45 @@ +module GetTypes where + +open import Level using () renaming (zero to ℓ₀) +open import Data.Nat using (ℕ) +open import Data.List using (List ; map) +open import Data.Vec using (Vec) renaming (map to mapV) +open import Function using (_∘_) +open import Function.Equality using (_⟶_ ; _⟨$⟩_) +open import Function.Injection using (module Injection) renaming (Injection to _↪_ ; id to id↪) +open import Relation.Binary.PropositionalEquality using (_≗_) renaming (setoid to EqSetoid) +open import Relation.Binary using (Setoid) +open Injection using (to) + +open import Generic using (≡-to-Π) + +module ListList where + record Get : Set₁ where + field + get : {A : Set} → List A → List A + free-theorem : {α β : Set} → (f : α → β) → get ∘ map f ≗ map f ∘ get + +module VecVec where + record Get : Set₁ where + field + getlen : ℕ → ℕ + get : {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n) + free-theorem : {α β : Set} (f : α → β) {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get + +module PartialVecVec where + record Get : Set₁ where + field + I : Setoid ℓ₀ ℓ₀ + gl₁ : I ↪ EqSetoid ℕ + gl₂ : I ⟶ EqSetoid ℕ + get : {A : Set} {i : Setoid.Carrier I} → Vec A (to gl₁ ⟨$⟩ i) → Vec A (gl₂ ⟨$⟩ i) + free-theorem : {α β : Set} → (f : α → β) → {i : Setoid.Carrier I} → get {_} {i} ∘ mapV f ≗ mapV f ∘ get + +VecVec-to-PartialVecVec : VecVec.Get → PartialVecVec.Get +VecVec-to-PartialVecVec G = record + { I = EqSetoid ℕ + ; gl₁ = id↪ + ; gl₂ = ≡-to-Π getlen + ; get = get + ; free-theorem = free-theorem + } where open VecVec.Get G diff --git a/LiftGet.agda b/LiftGet.agda index 31a632e..f064bf8 100644 --- a/LiftGet.agda +++ b/LiftGet.agda @@ -2,23 +2,51 @@ module LiftGet where open import Data.Unit using (⊤ ; tt) open import Data.Nat using (ℕ ; suc) -open import Data.Vec using (Vec ; toList ; fromList) renaming ([] to []V ; _∷_ to _∷V_) +open import Data.Vec using (Vec ; toList ; fromList) renaming ([] to []V ; _∷_ to _∷V_ ; map to mapV) open import Data.List using (List ; [] ; _∷_ ; length ; replicate ; map) open import Data.List.Properties using (length-map) open import Data.Product using (∃ ; _,_ ; proj₁ ; proj₂) open import Function using (_∘_ ; flip ; const) open import Relation.Binary.Core using (_≡_) -open import Relation.Binary.PropositionalEquality using (_≗_ ; sym ; cong ; refl ; subst ; trans ; proof-irrelevance) -open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) +open import Relation.Binary.PropositionalEquality using (_≗_ ; sym ; cong ; refl ; subst ; trans ; proof-irrelevance ; module ≡-Reasoning) +open import Relation.Binary.HeterogeneousEquality using (module ≅-Reasoning ; _≅_ ; ≅-to-≡ ; ≡-subst-removable) renaming (refl to het-refl ; sym to het-sym ; cong to het-cong ; reflexive to het-reflexive) import FreeTheorems open import Generic using (length-replicate ; subst-cong ; subst-fromList ; subst-subst ; toList-fromList ; toList-subst) -open FreeTheorems.ListList using (get-type ; free-theorem) -open FreeTheorems.VecVec using () renaming (get-type to getV-type) +open FreeTheorems.ListList using (get-type) renaming (free-theorem to free-theoremL ; Get to GetL ; module Get to GetL) +open FreeTheorems.VecVec using () renaming (get-type to getV-type ; Get to GetV ; module Get to GetV) getVec-to-getList : {getlen : ℕ → ℕ} → (getV-type getlen) → get-type getVec-to-getList get = toList ∘ get ∘ fromList +fromList∘map : {α β : Set} → (f : α → β) → (l : List α) → fromList (map f l) ≡ subst (Vec β) (sym (length-map f l)) (mapV f (fromList l)) +fromList∘map f [] = refl +fromList∘map f (x ∷ xs) rewrite fromList∘map f xs = trans (subst-cong (Vec _) (_∷V_ (f x)) (sym (length-map f xs)) (mapV f (fromList xs))) + (cong (flip (subst (Vec _)) (f x ∷V mapV f (fromList xs))) (proof-irrelevance (cong suc (sym (length-map f xs))) + (sym (cong suc (length-map f xs))))) + +toList∘map : {α β : Set} {n : ℕ} → (f : α → β) → (v : Vec α n) → toList (mapV f v) ≡ map f (toList v) +toList∘map f []V = refl +toList∘map f (x ∷V xs) = cong (_∷_ (f x)) (toList∘map f xs) + +GetV-to-GetL : GetV → GetL +GetV-to-GetL getrecord = record { get = toList ∘ get ∘ fromList; free-theorem = ft } + where open GetV getrecord + open ≡-Reasoning + ft : {α β : Set} → (f : α → β) → (xs : List α) → toList (get (fromList (map f xs))) ≡ map f (toList (get (fromList xs))) + ft f xs = begin + toList (get (fromList (map f xs))) + ≡⟨ cong (toList ∘ get) (fromList∘map f xs) ⟩ + toList (get (subst (Vec _) (sym (length-map f xs)) (mapV f (fromList xs)))) + ≡⟨ cong toList (subst-cong (Vec _) get (sym (length-map f xs)) (mapV f (fromList xs))) ⟩ + toList (subst (Vec _) (cong getlen (sym (length-map f xs))) (get (mapV f (fromList xs)))) + ≡⟨ toList-subst (get (mapV f (fromList xs))) (cong getlen (sym (length-map f xs))) ⟩ + toList (get (mapV f (fromList xs))) + ≡⟨ cong toList (free-theorem f (fromList xs)) ⟩ + toList (mapV f (get (fromList xs))) + ≡⟨ toList∘map f (get (fromList xs)) ⟩ + map f (toList (get (fromList xs))) ∎ + getList-to-getlen : get-type → ℕ → ℕ getList-to-getlen get = length ∘ get ∘ flip replicate tt @@ -31,10 +59,11 @@ getList-length get l = begin length (get l) ≡⟨ sym (length-map (const tt) (get l)) ⟩ length (map (const tt) (get l)) - ≡⟨ cong length (sym (free-theorem get (const tt) l)) ⟩ + ≡⟨ cong length (sym (free-theoremL get (const tt) l)) ⟩ length (get (map (const tt) l)) ≡⟨ cong (length ∘ get) (replicate-length l) ⟩ length (get (replicate (length l) tt)) ∎ + where open ≡-Reasoning length-toList : {A : Set} {n : ℕ} → (v : Vec A n) → length (toList v) ≡ n length-toList []V = refl @@ -47,6 +76,7 @@ getList-to-getVec-length-property get {_} {m} v = begin length (get (replicate (length (toList v)) tt)) ≡⟨ cong (length ∘ get ∘ flip replicate tt) (length-toList v) ⟩ length (get (replicate m tt)) ∎ + where open ≡-Reasoning getList-to-getVec : get-type → ∃ λ (getlen : ℕ → ℕ) → (getV-type getlen) getList-to-getVec get = getlen , get' @@ -55,6 +85,54 @@ getList-to-getVec get = getlen , get' get' : {C : Set} {m : ℕ} → Vec C m → Vec C (getlen m) get' {C} v = subst (Vec C) (getList-to-getVec-length-property get v) (fromList (get (toList v))) +ind-cong : {I : Set} → (X Y : I → Set) → (f : {i : I} → X i → Y i) → {i j : I} → (i ≡ j) → {x : X i} → {y : X j} → x ≅ y → f x ≅ f y +ind-cong X Y f refl het-refl = het-refl + +private + module GetV-Implementation (getrecord : GetL) where + + open GetL getrecord + + getlen = length ∘ get ∘ flip replicate tt + + + length-property : {C : Set} {m : ℕ} → (s : Vec C m) → length (get (toList s)) ≡ getlen m + length-property {m = m} s = begin + length (get (toList s)) + ≡⟨ sym (length-map (const tt) (get (toList s))) ⟩ + length (map (const tt) (get (toList s))) + ≡⟨ cong length (sym (free-theorem (const tt) (toList s))) ⟩ + length (get (map (const tt) (toList s))) + ≡⟨ cong (length ∘ get) (replicate-length (toList s)) ⟩ + length (get (replicate (length (toList s)) tt)) + ≡⟨ cong getlen (length-toList s) ⟩ + getlen m ∎ + where open ≡-Reasoning + + getV : {C : Set} {m : ℕ} → Vec C m → Vec C (getlen m) + getV s = subst (Vec _) (length-property s) (fromList (get (toList s))) + + ft : {α β : Set} (f : α → β) {n : ℕ} (v : Vec α n) → getV (mapV f v) ≡ mapV f (getV v) + ft f v = ≅-to-≡ (begin + subst (Vec _) (length-property (mapV f v)) (fromList (get (toList (mapV f v)))) + ≅⟨ ≡-subst-removable (Vec _) (length-property (mapV f v)) (fromList (get (toList (mapV f v)))) ⟩ + fromList (get (toList (mapV f v))) + ≅⟨ het-cong (fromList ∘ get) (het-reflexive (toList∘map f v)) ⟩ + fromList (get (map f (toList v))) + ≅⟨ het-cong fromList (het-reflexive (free-theorem f (toList v))) ⟩ + fromList (map f (get (toList v))) + ≡⟨ fromList∘map f (get (toList v)) ⟩ + subst (Vec _) (sym (length-map f (get (toList v)))) (mapV f (fromList (get (toList v)))) + ≅⟨ ≡-subst-removable (Vec _) (sym (length-map f (get (toList v)))) (mapV f (fromList (get (toList v)))) ⟩ + mapV f (fromList (get (toList v))) + ≅⟨ ind-cong (Vec _) (Vec _) (mapV f) (length-property v) (het-sym (≡-subst-removable (Vec _) (length-property v) (fromList (get (toList v))))) ⟩ + mapV f (subst (Vec _) (length-property v) (fromList (get (toList v)))) ∎) + where open ≅-Reasoning + +GetL-to-GetV : GetL → GetV +GetL-to-GetV getrecord = record { getlen = getlen; get = getV; free-theorem = ft } + where open GetV-Implementation getrecord + get-commut-1 : (get : get-type) {A : Set} → (l : List A) → fromList (get l) ≡ subst (Vec A) (sym (getList-length get l)) (proj₂ (getList-to-getVec get) (fromList l)) get-commut-1 get {A} l = begin fromList (get l) @@ -66,7 +144,8 @@ get-commut-1 get {A} l = begin subst (Vec A) p' (subst (Vec A) p (fromList (get (toList (fromList l))))) ≡⟨ refl ⟩ subst (Vec A) p' (proj₂ (getList-to-getVec get) (fromList l)) ∎ - where p : length (get (toList (fromList l))) ≡ length (get (replicate (length l) tt)) + where open ≡-Reasoning + p : length (get (toList (fromList l))) ≡ length (get (replicate (length l) tt)) p = getList-to-getVec-length-property get (fromList l) p' : length (get (replicate (length l) tt)) ≡ length (get l) p' = sym (getList-length get l) @@ -84,6 +163,7 @@ get-trafo-1 get {B} l = begin get (toList (fromList l)) ≡⟨ cong get (toList-fromList l) ⟩ get l ∎ + where open ≡-Reasoning vec-len : {A : Set} {n : ℕ} → Vec A n → ℕ vec-len {_} {n} _ = n @@ -98,6 +178,7 @@ fromList-toList {A} (x ∷V xs) = begin subst (Vec A) (cong suc (sym (length-toList xs))) (x ∷V xs) ≡⟨ cong (λ p → subst (Vec A) p (x ∷V xs)) (proof-irrelevance (cong suc (sym (length-toList xs))) (sym (cong suc (length-toList xs)))) ⟩ subst (Vec A) (sym (length-toList (x ∷V xs))) (x ∷V xs) ∎ + where open ≡-Reasoning get-commut-2 : (getlen : ℕ → ℕ) → (get : getV-type getlen) → {B : Set} {n : ℕ} → (toList ∘ get {B} {n}) ≗ (getVec-to-getList get) ∘ toList get-commut-2 getlen get {B} v = begin @@ -108,6 +189,7 @@ get-commut-2 getlen get {B} v = begin toList (get (subst (Vec B) (sym (length-toList v)) v)) ≡⟨ cong (toList ∘ get) (sym (fromList-toList v)) ⟩ toList (get (fromList (toList v))) ∎ + where open ≡-Reasoning get-trafo-2-getlen : (getlen : ℕ → ℕ) → (get : getV-type getlen) → proj₁ (getList-to-getVec (getVec-to-getList get)) ≗ getlen get-trafo-2-getlen getlen get n = begin @@ -118,6 +200,7 @@ get-trafo-2-getlen getlen get n = begin vec-len (get (fromList (replicate n tt))) ≡⟨ cong getlen (length-replicate n) ⟩ getlen n ∎ + where open ≡-Reasoning get-trafo-2-get : (getlen : ℕ → ℕ) → (get : getV-type getlen) → {B : Set} {n : ℕ} → proj₂ (getList-to-getVec (getVec-to-getList get)) ≗ subst (Vec B) (sym (get-trafo-2-getlen getlen get n)) ∘ get get-trafo-2-get getlen get {B} {n} v = begin @@ -136,7 +219,8 @@ get-trafo-2-get getlen get {B} {n} v = begin subst (Vec B) (trans (cong getlen (sym (length-toList v))) (trans p' p)) (get v) ≡⟨ cong (flip (subst (Vec B)) (get v)) (proof-irrelevance (trans (cong getlen (sym (length-toList v))) (trans p' p)) p'') ⟩ subst (Vec B) p'' (get v) ∎ - where n' : ℕ + where open ≡-Reasoning + n' : ℕ n' = length (toList (get (fromList (replicate n tt)))) p : length (toList (get (fromList (toList v)))) ≡ n' p = getList-to-getVec-length-property (getVec-to-getList get) v diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..5dfe960 --- /dev/null +++ b/Makefile @@ -0,0 +1,8 @@ +AGDA ?= agda +AGDALIB ?= /usr/share/agda-stdlib + +all:Everything.agdai +clean: + rm -f *.agdai +Everything.agdai:$(wildcard *.agda) + $(AGDA) -i. -i$(AGDALIB) Everything.agda diff --git a/Precond.agda b/Precond.agda index a6f2871..787f010 100644 --- a/Precond.agda +++ b/Precond.agda @@ -34,8 +34,9 @@ import CheckInsert open CheckInsert (decSetoid deq) using (checkInsert ; lemma-checkInsert-new ; lemma-lookupM-checkInsert-other) import BFF open import Bidir (decSetoid deq) using (_in-domain-of_ ; lemma-assoc-domain ; lemma-just-sequence) - -open BFF.PartialVecBFF (decSetoid deq) using (get-type ; assoc ; enumerate ; denumerate ; bff) +import GetTypes +open GetTypes.PartialVecVec using (Get ; module Get) +open BFF.PartialVecBFF (decSetoid deq) using (assoc ; enumerate ; denumerate ; bff) lemma-lookup-map-just : {n : ℕ} (f : Fin n) {A : Set} (v : Vec A n) → lookup f (map Maybe.just v) ≡ Maybe.just (lookup f v) lemma-lookup-map-just zero (x ∷ xs) = refl @@ -73,9 +74,9 @@ lemma-union-delete-fromFunc {n = n} {is = i ∷ is} {h = h} {g = g} ((x , px) Da maybe′ just (lookupM i (delete-many is (map just g))) (lookup i h) ∎ inner f | no f≢i = cong (flip (maybe′ just) (lookup f h)) (lemma-lookupM-delete (delete-many is (map just g)) f≢i) -assoc-enough : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) → (get : get-type gl₁ gl₂) → {i : Setoid.Carrier I} → (s : Vec Carrier (to gl₁ ⟨$⟩ i)) → (v : Vec Carrier (gl₂ ⟨$⟩ i)) → ∃ (λ h → assoc (get (enumerate s)) v ≡ just h) → ∃ λ u → bff gl₁ gl₂ get s v ≡ just u -assoc-enough gl₁ gl₂ get s v (h , p) = let w , pw = lemma-union-delete-fromFunc (lemma-assoc-domain (get s′) v h p) in _ , (begin - bff gl₁ gl₂ get s v +assoc-enough : (G : Get) → {i : Setoid.Carrier (Get.I G)} → (s : Vec Carrier (to (Get.gl₁ G) ⟨$⟩ i)) → (v : Vec Carrier (Get.gl₂ G ⟨$⟩ i)) → ∃ (λ h → assoc (Get.get G (enumerate s)) v ≡ just h) → ∃ λ u → bff G s v ≡ just u +assoc-enough G s v (h , p) = let w , pw = lemma-union-delete-fromFunc (lemma-assoc-domain (get s′) v h p) in _ , (begin + bff G s v ≡⟨ cong (flip _>>=_ (flip mapMV s′ ∘ flip lookupM) ∘ _<$>_ (flip union g′)) p ⟩ mapMV (flip lookupM (union h g′)) s′ ≡⟨ sym (sequence-map (flip lookupM (union h g′)) s′) ⟩ @@ -88,7 +89,8 @@ assoc-enough gl₁ gl₂ get s v (h , p) = let w , pw = lemma-union-delete-fromF sequenceV (map Maybe.just (map (flip lookup w) s′)) ≡⟨ lemma-just-sequence (map (flip lookup w) s′) ⟩ just (map (flip lookup w) s′) ∎) - where s′ = enumerate s + where open Get G + s′ = enumerate s g = fromFunc (denumerate s) g′ = delete-many (get s′) g |