diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-03-10 09:31:57 +0100 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-03-10 09:31:57 +0100 |
commit | 3532b34beabbaa6967fe660385c4b4036493a8f1 (patch) | |
tree | a3e9b9bc35c9df934f62bfd4df399c3eda7bd531 | |
parent | dab051e89bbe904587a047d239e79610554d5c91 (diff) | |
download | bidiragda-3532b34beabbaa6967fe660385c4b4036493a8f1.tar.gz |
port theorem-{1,2} to PartialShapeVec
-rw-r--r-- | Bidir.agda | 147 | ||||
-rw-r--r-- | Instances.agda | 30 |
2 files changed, 127 insertions, 50 deletions
@@ -13,7 +13,7 @@ open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_) open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_) open import Data.List using (List) open import Data.List.All using (All) -open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map) renaming (lookup to lookupVec) +open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map ; allFin) renaming (lookup to lookupVec) open import Data.Vec.Equality using () renaming (module Equality to VecEq) open import Data.Vec.Properties using (lookup∘tabulate ; map-cong ; map-∘ ; map-lookup-allFin) open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂) @@ -24,14 +24,16 @@ open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; open import Relation.Binary using (Setoid ; module Setoid ; module DecSetoid) import Relation.Binary.EqReasoning as EqR +open import Structures using (Functor ; IsFunctor ; Shaped ; module Shaped) +open import Instances using (MaybeFunctor) import GetTypes -open GetTypes.PartialVecVec using (Get ; module Get) +open GetTypes.PartialShapeVec using (Get ; module Get) open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; VecISetoid ; just-injective) open import FinMap import CheckInsert open CheckInsert A import BFF -open BFF.PartialVecBFF A using (assoc ; enumerate ; enumeratel ; denumerate ; bff) +open BFF.PartialShapeBFF A using (assoc ; enumerate ; denumerate ; bff) open Setoid using () renaming (_≈_ to _∋_≈_) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) @@ -107,11 +109,24 @@ lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin just x ∷ map just xs ∎ where open EqR (VecISetoid (MaybeSetoid A.setoid) at _) -theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Vec Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just (map just s) +lemma-fmap-denumerate-enumerate : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → {α : Set} {s : S} → (c : C α s) → Shaped.fmap ShapeT (denumerate ShapeT c) (enumerate ShapeT s) ≡ c +lemma-fmap-denumerate-enumerate {S} {C} ShapeT {s = s} c = begin + fmap (denumerate ShapeT c) (fill s (allFin (arity s))) + ≡⟨ fill-fmap (denumerate ShapeT c) s (allFin (arity s)) ⟩ + fill s (map (flip lookupVec (content c)) (allFin (arity s))) + ≡⟨ cong (fill s) (map-lookup-allFin (content c)) ⟩ + fill s (content c) + ≡⟨ content-fill c ⟩ + c ∎ + where open ≡-Reasoning + open Shaped ShapeT + + +theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Get.Container G Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just (Get.fmap G just s) theorem-1 G {i} s = begin bff G i s (get s) - ≡⟨ cong (bff G i s ∘ get) (sym (map-lookup-allFin s)) ⟩ - bff G i s (get (map f t)) + ≡⟨ cong (bff G i s ∘ get) (sym (lemma-fmap-denumerate-enumerate ShapeT s)) ⟩ + bff G i s (get (fmap f t)) ≡⟨ cong (bff G i s) (free-theorem f t) ⟩ bff G i s (map f (get t)) ≡⟨ refl ⟩ @@ -119,26 +134,26 @@ theorem-1 G {i} s = begin ≡⟨ cong (_<$>_ h′↦r ∘ _<$>_ h↦h′) (lemma-1 f (get t)) ⟩ (Maybe.just ∘ h′↦r ∘ h↦h′) (restrict f (toList (get t))) ≡⟨ cong just (begin - h′↦r (union (restrict f (toList (get t))) (reshape g′ (|gl₁| i))) + h′↦r (union (restrict f (toList (get t))) (reshape g′ (arity (|gl₁| i)))) ≡⟨ cong (h′↦r ∘ union (restrict f (toList (get t)))) (lemma-reshape-id g′) ⟩ h′↦r (union (restrict f (toList (get t))) g′) ≡⟨ cong h′↦r (lemma-disjoint-union f (get t)) ⟩ h′↦r (fromFunc f) ≡⟨ refl ⟩ - map (flip lookupM (fromFunc f)) t - ≡⟨ map-cong (lemma-lookupM-fromFunc f) t ⟩ - map (Maybe.just ∘ f) t - ≡⟨ map-∘ just f t ⟩ - map just (map f t) - ≡⟨ cong (map just) (map-lookup-allFin s) ⟩ - map just s ∎) ⟩ _ ∎ + fmap (flip lookupM (fromFunc f)) t + ≡⟨ IsFunctor.cong (isFunctor (|gl₁| i)) (lemma-lookupM-fromFunc f) t ⟩ + fmap (Maybe.just ∘ f) t + ≡⟨ IsFunctor.composition (isFunctor (|gl₁| i)) just f t ⟩ + fmap just (fmap f t) + ≡⟨ cong (fmap just) (lemma-fmap-denumerate-enumerate ShapeT s) ⟩ + fmap just s ∎) ⟩ _ ∎ where open ≡-Reasoning open Get G - t = enumeratel (|gl₁| i) - f = denumerate s + t = enumerate ShapeT (|gl₁| i) + f = denumerate ShapeT s g′ = delete-many (get t) (fromFunc f) - h↦h′ = flip union (reshape g′ (|gl₁| i)) - h′↦r = flip map t ∘ flip lookupM + h↦h′ = flip union (reshape g′ (arity (|gl₁| i))) + h′↦r = (λ f′ → fmap f′ t) ∘ flip lookupM lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a @@ -162,9 +177,21 @@ lemma->>=-just : {A B : Set} (ma : Maybe A) {f : A → Maybe B} {b : B} → (ma lemma->>=-just (just a) p = a , refl lemma->>=-just nothing () -lemma-just-sequence : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v -lemma-just-sequence [] = refl -lemma-just-sequence (x ∷ xs) = cong (_<$>_ (_∷_ x)) (lemma-just-sequence xs) +lemma-just-sequenceV : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v +lemma-just-sequenceV [] = refl +lemma-just-sequenceV (x ∷ xs) = cong (_<$>_ (_∷_ x)) (lemma-just-sequenceV xs) + +lemma-just-sequence : (G : Get) → {A : Set} {i : Get.|I| G} → (c : Get.Container G A (Get.|gl₁| G i)) → Get.sequence G (Get.fmap G just c) ≡ just c +lemma-just-sequence G {i = i} c = begin + fill (|gl₁| i) <$> sequenceV (content (fmap just c)) + ≡⟨ cong (_<$>_ (fill (|gl₁| i)) ∘ sequenceV) (fmap-content just c) ⟩ + fill (|gl₁| i) <$> sequenceV (map just (content c)) + ≡⟨ cong (_<$>_ (fill (|gl₁| i))) (lemma-just-sequenceV (content c)) ⟩ + fill (|gl₁| i) <$> just (content c) + ≡⟨ cong just (content-fill c) ⟩ + just c ∎ + where open ≡-Reasoning + open Get G lemma-sequenceV-successful : {A : Set} {n : ℕ} → (v : Vec (Maybe A) n) → {r : Vec A n} → sequenceV v ≡ just r → v ≡ map just r lemma-sequenceV-successful [] {r = []} p = refl @@ -173,18 +200,44 @@ lemma-sequenceV-successful (just x ∷ xs) () | nothing | _ lemma-sequenceV-successful (just x ∷ xs) {r = .x ∷ .ys} refl | just ys | [ p′ ] = cong (_∷_ (just x)) (lemma-sequenceV-successful xs p′) lemma-sequenceV-successful (nothing ∷ xs) () -lemma-get-sequenceV : {A : Set} → (G : Get) → {i : Get.|I| G} {v : Vec (Maybe A) (Get.|gl₁| G i)} {r : Vec A (Get.|gl₁| G i)} → sequenceV v ≡ just r → Get.get G <$> sequenceV v ≡ sequenceV (Get.get G v) -lemma-get-sequenceV G {v = v} {r = r} p = begin - get <$> sequenceV v - ≡⟨ cong (_<$>_ get ∘ sequenceV) (lemma-sequenceV-successful v p) ⟩ - get <$> sequenceV (map just r) - ≡⟨ cong (_<$>_ get) (lemma-just-sequence r) ⟩ +lemma-sequence-successful : (G : Get) → {A : Set} {i : Get.|I| G} → (c : Get.Container G (Maybe A) (Get.|gl₁| G i)) → {r : Get.Container G A (Get.|gl₁| G i)} → Get.sequence G c ≡ just r → c ≡ Get.fmap G just r +lemma-sequence-successful G {i = i} c {r} p = just-injective (sym (begin + fill (|gl₁| i) <$> (map just <$> (content <$> just r)) + ≡⟨ cong (_<$>_ (fill (|gl₁| i)) ∘ _<$>_ (map just)) (begin + content <$> just r + ≡⟨ cong (_<$>_ content) (sym p) ⟩ + content <$> (fill (|gl₁| i) <$> sequenceV (content c)) + ≡⟨ sym (Functor.composition MaybeFunctor content (fill (|gl₁| i)) (sequenceV (content c))) ⟩ + content ∘ fill (|gl₁| i) <$> sequenceV (content c) + ≡⟨ Functor.cong MaybeFunctor (fill-content (|gl₁| i)) (sequenceV (content c)) ⟩ + id <$> sequenceV (content c) + ≡⟨ Functor.identity MaybeFunctor (sequenceV (content c)) ⟩ + sequenceV (content c) + ≡⟨ cong sequenceV (lemma-sequenceV-successful (content c) (proj₂ wp)) ⟩ + sequenceV (map just (proj₁ wp)) + ≡⟨ lemma-just-sequenceV (proj₁ wp) ⟩ + just (proj₁ (lemma-<$>-just (sequenceV (content c)) p)) ∎) ⟩ + fill (|gl₁| i) <$> (map just <$> just (proj₁ (lemma-<$>-just (sequenceV (content c)) p))) + ≡⟨ cong (_<$>_ (fill (|gl₁| i)) ∘ just) (sym (lemma-sequenceV-successful (content c) (proj₂ wp))) ⟩ + fill (|gl₁| i) <$> just (content c) + ≡⟨ cong just (content-fill c) ⟩ + just c ∎)) + where open ≡-Reasoning + open Get G + wp = lemma-<$>-just (sequenceV (content c)) p + +lemma-get-sequence : {A : Set} → (G : Get) → {i : Get.|I| G} {v : Get.Container G (Maybe A) (Get.|gl₁| G i)} {r : Get.Container G A (Get.|gl₁| G i)} → Get.sequence G v ≡ just r → Get.get G <$> Get.sequence G v ≡ sequenceV (Get.get G v) +lemma-get-sequence G {v = v} {r = r} p = begin + get <$> sequence v + ≡⟨ cong (_<$>_ get ∘ sequence) (lemma-sequence-successful G v p) ⟩ + get <$> sequence (fmap just r) + ≡⟨ cong (_<$>_ get) (lemma-just-sequence G r) ⟩ get <$> just r - ≡⟨ sym (lemma-just-sequence (get r)) ⟩ + ≡⟨ sym (lemma-just-sequenceV (get r)) ⟩ sequenceV (map just (get r)) ≡⟨ cong sequenceV (sym (free-theorem just r)) ⟩ - sequenceV (get (map just r)) - ≡⟨ cong (sequenceV ∘ get) (sym (lemma-sequenceV-successful v p)) ⟩ + sequenceV (get (fmap just r)) + ≡⟨ cong (sequenceV ∘ get) (sym (lemma-sequence-successful G v p)) ⟩ sequenceV (get v) ∎ where open ≡-Reasoning open Get G @@ -198,16 +251,16 @@ sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _)) sequence-cong {S} (VecEq._∷-cong_ nothing xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _)) -theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec (Maybe Carrier) (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid (MaybeSetoid A.setoid) at _ ∋ Get.get G u ≈ map just v -theorem-2 G j s v u p with (lemma-<$>-just ((flip union (reshape (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G j))) <$> (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v)) p) -theorem-2 G j s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v) ph′) -theorem-2 G j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid A.setoid) at _ ⟩ +theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Get.Container G Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Get.Container G (Maybe Carrier) (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid (MaybeSetoid A.setoid) at _ ∋ Get.get G u ≈ map just v +theorem-2 G {i} j s v u p with (lemma-<$>-just ((flip union (reshape (delete-many (Get.get G (enumerate (Get.ShapeT G) (Get.|gl₁| G i))) (fromFunc (denumerate (Get.ShapeT G) s))) (Get.arity G (Get.|gl₁| G j)))) <$> (assoc (Get.get G (enumerate (Get.ShapeT G) (Get.|gl₁| G j))) v)) p) +theorem-2 G {i} j s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumerate (Get.ShapeT G) (Get.|gl₁| G j))) v) ph′) +theorem-2 G {i} j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid A.setoid) at _ ⟩ get u ≡⟨ just-injective (trans (cong (_<$>_ get) (sym p)) (cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph)) ⟩ get (h′↦r (h↦h′ h)) ≡⟨ refl ⟩ - get (map (flip lookupM (h↦h′ h)) t) + get (fmap (flip lookupM (h↦h′ h)) t) ≡⟨ free-theorem (flip lookupM (h↦h′ h)) t ⟩ map (flip lookupM (h↦h′ h)) (get t) ≡⟨ lemma-union-not-used h g′ (get t) (lemma-assoc-domain (get t) v h ph) ⟩ @@ -216,23 +269,23 @@ theorem-2 G j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid map just v ∎ where open SetoidReasoning open Get G - s′ = enumerate s - g = fromFunc (denumerate s) + s′ = enumerate ShapeT (|gl₁| i) + g = fromFunc (denumerate ShapeT s) g′ = delete-many (get s′) g - t = enumeratel (Get.|gl₁| G j) - h↦h′ = flip union (reshape g′ (Get.|gl₁| G j)) - h′↦r = flip map t ∘ flip lookupM + t = enumerate ShapeT (|gl₁| j) + h↦h′ = flip union (reshape g′ (arity (|gl₁| j))) + h′↦r = (λ f → fmap f t) ∘ flip lookupM -theorem-2′ : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just (map just u) → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v +theorem-2′ : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Get.Container G Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Get.Container G Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just (Get.fmap G just u) → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v theorem-2′ G j s v u p = drop-just (begin get <$> just u - ≡⟨ cong (_<$>_ get) (sym (lemma-just-sequence u)) ⟩ - get <$> sequenceV (map just u) - ≡⟨ lemma-get-sequenceV G (lemma-just-sequence u) ⟩ - sequenceV (get (map just u)) - ≈⟨ sequence-cong (theorem-2 G j s v (map just u) p) ⟩ + ≡⟨ cong (_<$>_ get) (sym (lemma-just-sequence G u)) ⟩ + get <$> sequence (fmap just u) + ≡⟨ lemma-get-sequence G (lemma-just-sequence G u) ⟩ + sequenceV (get (fmap just u)) + ≈⟨ sequence-cong (theorem-2 G j s v (fmap just u) p) ⟩ sequenceV (map just v) - ≡⟨ lemma-just-sequence v ⟩ + ≡⟨ lemma-just-sequenceV v ⟩ just v ∎) where open EqR (MaybeSetoid (VecISetoid A.setoid at _)) open Get G diff --git a/Instances.agda b/Instances.agda index faff6f8..b41b0a2 100644 --- a/Instances.agda +++ b/Instances.agda @@ -1,11 +1,35 @@ module Instances where +open import Category.Functor using (RawFunctor) +open import Data.Maybe as M using (Maybe) open import Data.Nat using (ℕ) open import Data.Vec using (Vec) -open import Function using (id) -open import Relation.Binary.PropositionalEquality using (refl) +open import Function using (_∘_ ; id) +open import Relation.Binary.PropositionalEquality as P using (_≗_ ; refl) -open import Structures using (Shaped) +open import Structures using (Functor ; Shaped) + +MaybeFunctor : Functor Maybe +MaybeFunctor = record + { rawfunctor = M.functor + ; isFunctor = record + { cong = cong + ; identity = identity + ; composition = composition + } } + where _<$>_ = RawFunctor._<$>_ M.functor + + cong : {α β : Set} {g h : α → β} → g ≗ h → _<$>_ g ≗ _<$>_ h + cong g≗h (M.just x) = P.cong M.just (g≗h x) + cong g≗h M.nothing = refl + + identity : {α : Set} → _<$>_ {α} id ≗ id + identity (M.just x) = refl + identity M.nothing = refl + + composition : {α β γ : Set} → (g : β → γ) → (h : α → β) → _<$>_ (g ∘ h) ≗ _<$>_ g ∘ _<$>_ h + composition g h (M.just x) = refl + composition g h M.nothing = refl VecShaped : Shaped ℕ Vec VecShaped = record |