summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2013-01-28 13:58:30 +0100
committerHelmut Grohne <helmut@subdivi.de>2013-01-28 13:58:30 +0100
commitdf1c4f99c384e2e94c1e05ebf79e29947a6f5d83 (patch)
treeb658dd84b9c15ceef318aefb8c6b0b0f0f8e65ee
parenta1dc58fcd06028cb968c99a67db4b44bd1abc3d7 (diff)
downloadbidiragda-df1c4f99c384e2e94c1e05ebf79e29947a6f5d83.tar.gz
drop the insert- prefix from the insertionresult ctors
-rw-r--r--Bidir.agda12
-rw-r--r--CheckInsert.agda18
2 files changed, 15 insertions, 15 deletions
diff --git a/Bidir.agda b/Bidir.agda
index ef3b397..4428bba 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -41,9 +41,9 @@ lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (
lemma-lookupM-assoc i is x xs h p with assoc is xs
lemma-lookupM-assoc i is x xs h () | nothing
lemma-lookupM-assoc i is x xs h p | just h' with checkInsert i x h' | insertionresult i x h'
-lemma-lookupM-assoc i is x xs .h refl | just h | ._ | insert-same pl = pl
-lemma-lookupM-assoc i is x xs ._ refl | just h' | ._ | insert-new _ = lemma-lookupM-insert i x h'
-lemma-lookupM-assoc i is x xs h () | just h' | ._ | insert-wrong _ _ _
+lemma-lookupM-assoc i is x xs .h refl | just h | ._ | same pl = pl
+lemma-lookupM-assoc i is x xs ._ refl | just h' | ._ | new _ = lemma-lookupM-insert i x h'
+lemma-lookupM-assoc i is x xs h () | just h' | ._ | wrong _ _ _
lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing
lemma-∉-lookupM-assoc i [] [] .empty refl i∉is = lemma-lookupM-empty i
@@ -64,13 +64,13 @@ lemma-assoc-domain [] [] h ph = Data.List.All.[]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] with checkInsert i' x' h' | inspect (checkInsert i' x') h' | insertionresult i' x' h'
-lemma-assoc-domain (i' ∷ is') (x' ∷ xs') .h refl | just h | [ ph' ] | ._ | _ | insert-same pl = All._∷_ (x' , pl) (lemma-assoc-domain is' xs' h ph')
-lemma-assoc-domain (i' ∷ is') (x' ∷ xs') ._ refl | just h' | [ ph' ] | ._ | [ cI≡ ] | insert-new _ = All._∷_
+lemma-assoc-domain (i' ∷ is') (x' ∷ xs') .h refl | just h | [ ph' ] | ._ | _ | same pl = All._∷_ (x' , pl) (lemma-assoc-domain is' xs' h ph')
+lemma-assoc-domain (i' ∷ is') (x' ∷ xs') ._ refl | just h' | [ ph' ] | ._ | [ cI≡ ] | new _ = All._∷_
(x' , lemma-lookupM-insert i' x' h')
(Data.List.All.map
(λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' (insert i' x' h') (proj₂ p) cI≡)
(lemma-assoc-domain is' xs' h' ph'))
-lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | just h' | [ ph' ] | ._ | _ | insert-wrong _ _ _
+lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | just h' | [ ph' ] | ._ | _ | wrong _ _ _
lemma-map-lookupM-insert : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (h : FinMapMaybe n Carrier) → i ∉ (toList is) → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is
lemma-map-lookupM-insert i [] x h i∉is = refl
diff --git a/CheckInsert.agda b/CheckInsert.agda
index 8c1aa20..142cc61 100644
--- a/CheckInsert.agda
+++ b/CheckInsert.agda
@@ -23,16 +23,16 @@ checkInsert i b m with lookupM i m
... | no b≢c = nothing
data InsertionResult {n : ℕ} (i : Fin n) (x : Carrier) (h : FinMapMaybe n Carrier) : Maybe (FinMapMaybe n Carrier) → Set where
- insert-same : lookupM i h ≡ just x → InsertionResult i x h (just h)
- insert-new : lookupM i h ≡ nothing → InsertionResult i x h (just (insert i x h))
- insert-wrong : (x' : Carrier) → x ≢ x' → lookupM i h ≡ just x' → InsertionResult i x h nothing
+ same : lookupM i h ≡ just x → InsertionResult i x h (just h)
+ new : lookupM i h ≡ nothing → InsertionResult i x h (just (insert i x h))
+ wrong : (x' : Carrier) → x ≢ x' → lookupM i h ≡ just x' → InsertionResult i x h nothing
insertionresult : {n : ℕ} → (i : Fin n) → (x : Carrier) → (h : FinMapMaybe n Carrier) → InsertionResult i x h (checkInsert i x h)
insertionresult i x h with lookupM i h | inspect (lookupM i) h
insertionresult i x h | just x' | _ with deq x x'
-insertionresult i x h | just .x | [ il ] | yes refl = insert-same il
-insertionresult i x h | just x' | [ il ] | no x≢x' = insert-wrong x' x≢x' il
-insertionresult i x h | nothing | [ il ] = insert-new il
+insertionresult i x h | just .x | [ il ] | yes refl = same il
+insertionresult i x h | just x' | [ il ] | no x≢x' = wrong x' x≢x' il
+insertionresult i x h | nothing | [ il ] = new il
lemma-checkInsert-same : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m
lemma-checkInsert-same i x m p with lookupM i m
@@ -52,9 +52,9 @@ lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl
lemma-checkInsert-restrict : {n : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷ is))
lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is) | insertionresult i (f i) (restrict f is)
-lemma-checkInsert-restrict f i is | ._ | insert-same p = cong just (lemma-insert-same _ i (f i) p)
-lemma-checkInsert-restrict f i is | ._ | insert-new _ = refl
-lemma-checkInsert-restrict f i is | ._ | insert-wrong x fi≢x p = contradiction (lemma-lookupM-restrict i f is x p) fi≢x
+lemma-checkInsert-restrict f i is | ._ | same p = cong just (lemma-insert-same _ i (f i) p)
+lemma-checkInsert-restrict f i is | ._ | new _ = refl
+lemma-checkInsert-restrict f i is | ._ | wrong x fi≢x p = contradiction (lemma-lookupM-restrict i f is x p) fi≢x
lemma-lookupM-checkInsert : {n : ℕ} → (i j : Fin n) → (x y : Carrier) → (h h' : FinMapMaybe n Carrier) → lookupM i h ≡ just x → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x
lemma-lookupM-checkInsert i j x y h h' pl ph' with lookupM j h | inspect (lookupM j) h