summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-01-26 15:22:09 +0100
committerHelmut Grohne <helmut@subdivi.de>2012-01-26 15:22:09 +0100
commit258c1c6a780fcffaf34cfe01ccb1175de1d5b341 (patch)
tree5bc5e3e314cfb66670208aa9f8282d941d6f69a2 /Bidir.agda
parent8b45125422a2b737ff660c798e00de073983f2cc (diff)
downloadbidiragda-258c1c6a780fcffaf34cfe01ccb1175de1d5b341.tar.gz
reduce usage of sym
Try to always construct statements of the form complex expression \== simple expression.
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda42
1 files changed, 21 insertions, 21 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 274710f..bc00eea 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -71,20 +71,20 @@ assoc _ _ _ = nothing
generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
generate f is = fromAscList (zip is (map f is))
-lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → just a ≡ lookupM f m → m ≡ insert f a m
+lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → lookupM f m ≡ just a → m ≡ insert f a m
lemma-insert-same [] () a p
lemma-insert-same (.(just a) ∷ xs) zero a refl = refl
lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p)
-lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → nothing ≡ lookupM {A} i empty
+lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing
lemma-lookupM-empty zero = refl
lemma-lookupM-empty (suc i) = lemma-lookupM-empty i
lemma-from-just : {A : Set} → {x y : A} → _≡_ {_} {Maybe A} (just x) (just y) → x ≡ y
lemma-from-just refl = refl
-lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → just a ≡ lookupM i (insert i a m)
-lemma-lookupM-insert zero _ (_ ∷ _) = sym refl
+lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → lookupM i (insert i a m) ≡ just a
+lemma-lookupM-insert zero _ (_ ∷ _) = refl
lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs
lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m)
@@ -93,40 +93,40 @@ lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl
lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl
lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (contraposition (cong suc) p)
-lemma-lookupM-generate : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → just a ≡ lookupM i (generate f is) → a ≡ f i
+lemma-lookupM-generate : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → lookupM i (generate f is) ≡ just a → f i ≡ a
lemma-lookupM-generate {A} i f [] a p with begin
just a
- ≡⟨ p ⟩
+ ≡⟨ sym p ⟩
lookupM i (generate f [])
≡⟨ refl ⟩
lookupM i empty
- ≡⟨ sym (lemma-lookupM-empty i) ⟩
+ ≡⟨ lemma-lookupM-empty i ⟩
nothing ∎
lemma-lookupM-generate i f [] a p | ()
lemma-lookupM-generate i f (i' ∷ is) a p with i ≟F i'
lemma-lookupM-generate i f (.i ∷ is) a p | yes refl = lemma-from-just (begin
- just a
- ≡⟨ p ⟩
- lookupM i (generate f (i ∷ is))
- ≡⟨ refl ⟩
- lookupM i (insert i (f i) (generate f is))
+ just (f i)
≡⟨ sym (lemma-lookupM-insert i (f i) (generate f is)) ⟩
- just (f i) ∎)
+ lookupM i (insert i (f i) (generate f is))
+ ≡⟨ refl ⟩
+ lookupM i (generate f (i ∷ is))
+ ≡⟨ p ⟩
+ just a ∎)
lemma-lookupM-generate i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-generate i f is a (begin
- just a
- ≡⟨ p ⟩
- lookupM i (generate f (i' ∷ is))
- ≡⟨ refl ⟩
+ lookupM i (generate f is)
+ ≡⟨ lemma-lookupM-insert-other i i' (f i') (generate f is) ¬p2 ⟩
lookupM i (insert i' (f i') (generate f is))
- ≡⟨ sym (lemma-lookupM-insert-other i i' (f i') (generate f is) ¬p2) ⟩
- lookupM i (generate f is) ∎)
+ ≡⟨ refl ⟩
+ lookupM i (generate f (i' ∷ is))
+ ≡⟨ p ⟩
+ just a ∎)
lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is))
lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is)
lemma-checkInsert-generate eq f i is | nothing | _ = refl
-lemma-checkInsert-generate eq f i is | just x | Reveal_is_.[_] prf with lemma-lookupM-generate i f is x (sym prf)
+lemma-checkInsert-generate eq f i is | just x | Reveal_is_.[_] prf with lemma-lookupM-generate i f is x prf
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl with eq (f i) (f i)
-lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | yes refl = cong just (lemma-insert-same (generate f is) i (f i) (sym prf))
+lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | yes refl = cong just (lemma-insert-same (generate f is) i (f i) prf)
lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | no ¬p = contradiction refl ¬p
lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)