summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-01-26 15:07:04 +0100
committerHelmut Grohne <helmut@subdivi.de>2012-01-26 15:07:04 +0100
commit8b45125422a2b737ff660c798e00de073983f2cc (patch)
tree97f764b29adeadd17ff8eb380a3f9eeab5c08818 /Bidir.agda
parent53e656496f0dfc6b5d6b8b6e5caf5efc0e7ee404 (diff)
downloadbidiragda-8b45125422a2b737ff660c798e00de073983f2cc.tar.gz
open \==-Reasoning at top level
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda5
1 files changed, 1 insertions, 4 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 7f16064..274710f 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -13,6 +13,7 @@ open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
+open Relation.Binary.PropositionalEquality.≡-Reasoning
_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B
_>>=_ = flip (flip maybe′ nothing)
@@ -101,7 +102,6 @@ lemma-lookupM-generate {A} i f [] a p with begin
lookupM i empty
≡⟨ sym (lemma-lookupM-empty i) ⟩
nothing ∎
- where open Relation.Binary.PropositionalEquality.≡-Reasoning
lemma-lookupM-generate i f [] a p | ()
lemma-lookupM-generate i f (i' ∷ is) a p with i ≟F i'
lemma-lookupM-generate i f (.i ∷ is) a p | yes refl = lemma-from-just (begin
@@ -112,7 +112,6 @@ lemma-lookupM-generate i f (.i ∷ is) a p | yes refl = lemma-from-just (begin
lookupM i (insert i (f i) (generate f is))
≡⟨ sym (lemma-lookupM-insert i (f i) (generate f is)) ⟩
just (f i) ∎)
- where open Relation.Binary.PropositionalEquality.≡-Reasoning
lemma-lookupM-generate i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-generate i f is a (begin
just a
≡⟨ p ⟩
@@ -121,7 +120,6 @@ lemma-lookupM-generate i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-generate i
lookupM i (insert i' (f i') (generate f is))
≡⟨ sym (lemma-lookupM-insert-other i i' (f i') (generate f is) ¬p2) ⟩
lookupM i (generate f is) ∎)
- where open Relation.Binary.PropositionalEquality.≡-Reasoning
lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is))
lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is)
@@ -143,7 +141,6 @@ lemma-1 eq f (i ∷ is′) = begin
(checkInsert eq i (f i) (generate f is′))
≡⟨ lemma-checkInsert-generate eq f i is′ ⟩
just (generate f (i ∷ is′)) ∎
- where open Relation.Binary.PropositionalEquality.≡-Reasoning
lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v
lemma-2 eq [] [] h p = refl