summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-01-26 14:51:21 +0100
committerHelmut Grohne <helmut@subdivi.de>2012-01-26 14:51:21 +0100
commit53e656496f0dfc6b5d6b8b6e5caf5efc0e7ee404 (patch)
tree70e2a12871b68c63c01462c0f0c5f636a0d340e6 /Bidir.agda
parent024635440449c8249cdff9d5637fcb7e02b5d293 (diff)
downloadbidiragda-53e656496f0dfc6b5d6b8b6e5caf5efc0e7ee404.tar.gz
prove the remaining parts of lemma-checkInsert-generate
Introducing the following lemmata: * lemma-lookupM-empty : nothing \== lookupM i empty * lemma-from-just : just x \== just y -> x \== y * lemma-lookupM-insert : just a \== lookupM i (insert i a m) * lemma-lookupM-insert-other : \neg (i \== j) -> lookupM i m \== lookupM i (insert j a m) * lemma-lookupM-generate : just a = lookupM i (generate f is) -> a \== f i
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda58
1 files changed, 54 insertions, 4 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 4bdc573..7f16064 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -3,12 +3,14 @@ module Bidir where
open import Data.Bool hiding (_≟_)
open import Data.Nat
open import Data.Fin
+open import Data.Fin.Props renaming (_≟_ to _≟F_)
open import Data.Maybe
open import Data.List hiding (replicate)
open import Data.Vec hiding (map ; zip ; _>>=_) renaming (lookup to lookupVec)
open import Data.Product hiding (zip ; map)
open import Function
open import Relation.Nullary
+open import Relation.Nullary.Negation
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
@@ -73,13 +75,61 @@ lemma-insert-same [] () a p
lemma-insert-same (.(just a) ∷ xs) zero a refl = refl
lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p)
+lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → nothing ≡ lookupM {A} i empty
+lemma-lookupM-empty zero = refl
+lemma-lookupM-empty (suc i) = lemma-lookupM-empty i
+
+lemma-from-just : {A : Set} → {x y : A} → _≡_ {_} {Maybe A} (just x) (just y) → x ≡ y
+lemma-from-just refl = refl
+
+lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → just a ≡ lookupM i (insert i a m)
+lemma-lookupM-insert zero _ (_ ∷ _) = sym refl
+lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs
+
+lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m)
+lemma-lookupM-insert-other zero zero a m p = contradiction refl p
+lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl
+lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl
+lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (contraposition (cong suc) p)
+
+lemma-lookupM-generate : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → just a ≡ lookupM i (generate f is) → a ≡ f i
+lemma-lookupM-generate {A} i f [] a p with begin
+ just a
+ ≡⟨ p ⟩
+ lookupM i (generate f [])
+ ≡⟨ refl ⟩
+ lookupM i empty
+ ≡⟨ sym (lemma-lookupM-empty i) ⟩
+ nothing ∎
+ where open Relation.Binary.PropositionalEquality.≡-Reasoning
+lemma-lookupM-generate i f [] a p | ()
+lemma-lookupM-generate i f (i' ∷ is) a p with i ≟F i'
+lemma-lookupM-generate i f (.i ∷ is) a p | yes refl = lemma-from-just (begin
+ just a
+ ≡⟨ p ⟩
+ lookupM i (generate f (i ∷ is))
+ ≡⟨ refl ⟩
+ lookupM i (insert i (f i) (generate f is))
+ ≡⟨ sym (lemma-lookupM-insert i (f i) (generate f is)) ⟩
+ just (f i) ∎)
+ where open Relation.Binary.PropositionalEquality.≡-Reasoning
+lemma-lookupM-generate i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-generate i f is a (begin
+ just a
+ ≡⟨ p ⟩
+ lookupM i (generate f (i' ∷ is))
+ ≡⟨ refl ⟩
+ lookupM i (insert i' (f i') (generate f is))
+ ≡⟨ sym (lemma-lookupM-insert-other i i' (f i') (generate f is) ¬p2) ⟩
+ lookupM i (generate f is) ∎)
+ where open Relation.Binary.PropositionalEquality.≡-Reasoning
+
lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is))
lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is)
lemma-checkInsert-generate eq f i is | nothing | _ = refl
-lemma-checkInsert-generate eq f i is | just x | _ with eq (f i) x
-lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] p | yes refl = cong just (lemma-insert-same (generate f is) i (f i) (sym p))
-lemma-checkInsert-generate eq f i is | just x | _ | no ¬p = {!!}
-
+lemma-checkInsert-generate eq f i is | just x | Reveal_is_.[_] prf with lemma-lookupM-generate i f is x (sym prf)
+lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl with eq (f i) (f i)
+lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | yes refl = cong just (lemma-insert-same (generate f is) i (f i) (sym prf))
+lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | no ¬p = contradiction refl ¬p
lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
lemma-1 eq f [] = refl