diff options
author | Helmut Grohne <helmut@subdivi.de> | 2012-01-21 10:58:14 +0100 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2012-01-21 10:58:14 +0100 |
commit | 6e458b738fd75fccac1c605091bfcf7486001533 (patch) | |
tree | 3cbb7002ae371e3c979ccdfd366fe067bef938b4 /Bidir.agda | |
parent | ce0fc8fe4e14491e52e796d2ddbaa07d90060697 (diff) | |
download | bidiragda-6e458b738fd75fccac1c605091bfcf7486001533.tar.gz |
split FinMap to FinMapMaybe
The FinMapMaybe is what FinMap previously was. The FinMap instead now really
maps its whole domain to something. This property is needed to avoid the
usage of fromJust in the definition of bff. With this split applied the
definition of bff is now complete.
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 42 |
1 files changed, 22 insertions, 20 deletions
@@ -13,43 +13,45 @@ open import Relation.Binary.Core module FinMap where - FinMap : ℕ → Set → Set - FinMap n A = Vec (Maybe A) n - - lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → Maybe A - lookup = lookupVec + FinMapMaybe : ℕ → Set → Set + FinMapMaybe n A = Vec (Maybe A) n - notMember : {A : Set} → {n : ℕ} → Fin n → FinMap n A → Bool - notMember n = not ∘ maybeToBool ∘ lookup n + lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A + lookupM = lookupVec - insert : {A : Set} {n : ℕ} → Fin n → A → FinMap n A → FinMap n A + insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A insert f a m = m [ f ]≔ (just a) - empty : {A : Set} {n : ℕ} → FinMap n A + empty : {A : Set} {n : ℕ} → FinMapMaybe n A empty = replicate nothing - fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMap n A - fromAscList [] = empty - fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs) + FinMap : ℕ → Set → Set + FinMap n A = Vec A n + + lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A + lookup = lookupVec + + fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A + fromFunc = tabulate - union : {A : Set} {n : ℕ} → FinMap n A → FinMap n A → FinMap n A - union m1 m2 = tabulate (λ f → maybe′ just (lookup f m2) (lookup f m1)) + union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n A → FinMap n A + union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1)) open FinMap -checkInsert : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → Fin n → A → FinMap n A → Maybe (FinMap n A) -checkInsert eq i b m with lookup i m +checkInsert : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A) +checkInsert eq i b m with lookupM i m checkInsert eq i b m | just c with eq b c checkInsert eq i b m | just .b | yes refl = just m checkInsert eq i b m | just c | no ¬p = nothing checkInsert eq i b m | nothing = just (insert i b m) -assoc : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → List (Fin n) → List A → Maybe (FinMap n A) +assoc : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → List (Fin n) → List A → Maybe (FinMapMaybe n A) assoc _ [] [] = just empty assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs) assoc _ _ _ = nothing -generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMap n A +generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A generate f [] = empty generate f (n ∷ ns) = insert n (f n) (generate f ns) @@ -62,7 +64,7 @@ idrange n = toList (tabulate id) bff : ({A : Set} → List A → List A) → ({B : Set} → ((x y : B) → Dec (x ≡ y)) → List B → List B → Maybe (List B)) bff get eq s v = let s′ = idrange (length s) - g = fromAscList (zip s′ s) + g = fromFunc (λ f → lookupVec f (fromList s)) h = assoc eq (get s′) v h′ = maybe′ (λ jh → just (union jh g)) nothing h - in maybe′ (λ jh′ → just (map {!!} s′)) nothing h′ + in maybe′ (λ jh′ → just (map (flip lookup jh′) s′)) nothing h′ |