summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-10-22 11:21:10 +0200
committerHelmut Grohne <helmut@subdivi.de>2012-10-22 11:21:10 +0200
commit9bc4007c94a94706acbfb02103581b3d94e38001 (patch)
tree7c343f526502951e32fbf2fd8ac486ea8b42b569 /Bidir.agda
parent58038d636d9f1225f8355c22102823e3168ad56c (diff)
downloadbidiragda-9bc4007c94a94706acbfb02103581b3d94e38001.tar.gz
finally parameterize CheckInsert
Also adapt depending modules. Long lines generally become shorter. The misleading name "EqInst" (hiding the decidability) got discarded.
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda47
1 files changed, 24 insertions, 23 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 1b68e60..437dccf 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -24,7 +24,8 @@ open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨
import FreeTheorems
open FreeTheorems.VecVec using (get-type ; free-theorem)
open import FinMap
-open import CheckInsert
+import CheckInsert
+open CheckInsert Carrier deq
open import BFF using (_>>=_ ; fmap)
open BFF.VecBFF Carrier deq using (assoc ; enumerate ; denumerate ; bff)
@@ -33,31 +34,31 @@ lemma-1 f [] = refl
lemma-1 f (i ∷ is′) = begin
assoc (i ∷ is′) (map f (i ∷ is′))
≡⟨ refl ⟩
- assoc is′ (map f is′) >>= checkInsert deq i (f i)
- ≡⟨ cong (λ m → m >>= checkInsert deq i (f i)) (lemma-1 f is′) ⟩
- just (restrict f (toList is′)) >>= (checkInsert deq i (f i))
+ assoc is′ (map f is′) >>= checkInsert i (f i)
+ ≡⟨ cong (λ m → m >>= checkInsert i (f i)) (lemma-1 f is′) ⟩
+ just (restrict f (toList is′)) >>= (checkInsert i (f i))
≡⟨ refl ⟩
- checkInsert deq i (f i) (restrict f (toList is′))
- ≡⟨ lemma-checkInsert-restrict deq f i (toList is′) ⟩
+ checkInsert i (f i) (restrict f (toList is′))
+ ≡⟨ lemma-checkInsert-restrict f i (toList is′) ⟩
just (restrict f (toList (i ∷ is′))) ∎
lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x
lemma-lookupM-assoc i is x xs h p with assoc is xs
lemma-lookupM-assoc i is x xs h () | nothing
-lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof deq i x h' record
+lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof i x h' record
{ same = λ lookupM≡justx → begin
lookupM i h
- ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-same deq i x h' lookupM≡justx))) ⟩
+ ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-same i x h' lookupM≡justx))) ⟩
lookupM i h'
≡⟨ lookupM≡justx ⟩
just x ∎
; new = λ lookupM≡nothing → begin
lookupM i h
- ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-new deq i x h' lookupM≡nothing))) ⟩
+ ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-new i x h' lookupM≡nothing))) ⟩
lookupM i (insert i x h')
≡⟨ lemma-lookupM-insert i x h' ⟩
just x ∎
- ; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong deq i x h' x' x≢x' lookupM≡justx'))
+ ; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong i x h' x' x≢x' lookupM≡justx'))
}
lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing
@@ -69,22 +70,22 @@ lemma-∉-lookupM-assoc i [] [] h ph i∉is = begin
nothing ∎
lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc is' xs' | inspect (assoc is') xs'
lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ]
-lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = apply-checkInsertProof deq i' x' h' record {
+lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = apply-checkInsertProof i' x' h' record {
same = λ lookupM-i'-h'≡just-x' → begin
lookupM i h
- ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x'))) ⟩
+ ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-same i' x' h' lookupM-i'-h'≡just-x'))) ⟩
lookupM i h'
≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩
nothing ∎
; new = λ lookupM-i'-h'≡nothing → begin
lookupM i h
- ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-new deq i' x' h' lookupM-i'-h'≡nothing))) ⟩
+ ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-new i' x' h' lookupM-i'-h'≡nothing))) ⟩
lookupM i (insert i' x' h')
≡⟨ sym (lemma-lookupM-insert-other i i' x' h' (i∉is ∘ here)) ⟩
lookupM i h'
≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩
nothing ∎
- ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong deq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x''))
+ ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x''))
}
_in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set
@@ -94,16 +95,16 @@ lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier
lemma-assoc-domain [] [] h ph = Data.List.All.[]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ]
-lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply-checkInsertProof deq i' x' h' record {
+lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply-checkInsertProof i' x' h' record {
same = λ lookupM-i'-h'≡just-x' → Data.List.All._∷_
- (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x')))) lookupM-i'-h'≡just-x'))
- (lemma-assoc-domain is' xs' h (trans ph' (trans (sym (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x')) ph)))
+ (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-same i' x' h' lookupM-i'-h'≡just-x')))) lookupM-i'-h'≡just-x'))
+ (lemma-assoc-domain is' xs' h (trans ph' (trans (sym (lemma-checkInsert-same i' x' h' lookupM-i'-h'≡just-x')) ph)))
; new = λ lookupM-i'-h'≡nothing → Data.List.All._∷_
- (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-new deq i' x' h' lookupM-i'-h'≡nothing)))) (lemma-lookupM-insert i' x' h')))
+ (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-new i' x' h' lookupM-i'-h'≡nothing)))) (lemma-lookupM-insert i' x' h')))
(Data.List.All.map
- (λ {i} p → proj₁ p , lemma-lookupM-checkInsert deq i i' (proj₁ p) x' h' h (proj₂ p) ph)
+ (λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' h (proj₂ p) ph)
(lemma-assoc-domain is' xs' h' ph'))
- ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong deq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x''))
+ ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x''))
}
lemma-map-lookupM-insert : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (h : FinMapMaybe n Carrier) → i ∉ (toList is) → (toList is) in-domain-of h → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is
@@ -115,7 +116,7 @@ lemma-map-lookupM-insert i (i' ∷ is') x h i∉is ph = begin
≡⟨ cong (_∷_ (lookupM i' h)) (lemma-map-lookupM-insert i is' x h (i∉is ∘ there) (Data.List.All.tail ph)) ⟩
lookupM i' h ∷ map (flip lookupM h) is' ∎
-lemma-map-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → (h' : FinMapMaybe n Carrier) → assoc is xs ≡ just h' → checkInsert deq i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is
+lemma-map-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → (h' : FinMapMaybe n Carrier) → assoc is xs ≡ just h' → checkInsert i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is
lemma-map-lookupM-assoc i [] x [] h h' ph' ph = refl
lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph with any (_≟_ i) (toList (i' ∷ is'))
lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p with Data.List.All.lookup (lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h' ph') p
@@ -140,8 +141,8 @@ lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin
lookupM i h ∷ map (flip lookupM h) is
≡⟨ cong (flip _∷_ (map (flip lookupM h) is)) (lemma-lookupM-assoc i is x xs h (begin
assoc (i ∷ is) (x ∷ xs)
- ≡⟨ cong (flip _>>=_ (checkInsert deq i x)) ir ⟩
- checkInsert deq i x h'
+ ≡⟨ cong (flip _>>=_ (checkInsert i x)) ir ⟩
+ checkInsert i x h'
≡⟨ p ⟩
just h ∎) ) ⟩
just x ∷ map (flip lookupM h) is