diff options
author | Helmut Grohne <helmut@subdivi.de> | 2012-06-05 15:35:09 +0200 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2012-06-05 15:35:09 +0200 |
commit | ac8dee6708affea52aedc1ffcc5c83f8043ad91d (patch) | |
tree | f11c8161fe240233ecaee4f6c773f4075f7b564f /Bidir.agda | |
parent | a98ec27d280b41b86fad060aff60c3e9037fc669 (diff) | |
download | bidiragda-ac8dee6708affea52aedc1ffcc5c83f8043ad91d.tar.gz |
move bff and friends to submodule ListBFF
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 24 |
1 files changed, 2 insertions, 22 deletions
@@ -23,16 +23,9 @@ open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨ open import FinMap open import CheckInsert -_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B -_>>=_ = flip (flip maybe′ nothing) +open import BFF using (_>>=_ ; fmap) -fmap : {A B : Set} → (A → B) → Maybe A → Maybe B -fmap f = maybe′ (λ a → just (f a)) nothing - -assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A) -assoc _ [] [] = just empty -assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b) -assoc _ _ _ = nothing +open BFF.ListBFF using (assoc ; enumerate ; denumerate ; bff) lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (restrict f is) lemma-1 eq f [] = refl @@ -169,19 +162,6 @@ lemma-2 eq (i ∷ is) (x ∷ xs) h p | just h' | Reveal_is_.[_] ir = begin ≡⟨ refl ⟩ map just (x ∷ xs) ∎ -enumerate : {A : Set} → (l : List A) → List (Fin (length l)) -enumerate l = toList (tabulate id) - -denumerate : {A : Set} (l : List A) → Fin (length l) → A -denumerate l = flip lookupVec (fromList l) - -bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B)) -bff get eq s v = let s′ = enumerate s - g = fromFunc (denumerate s) - h = assoc eq (get s′) v - h′ = fmap (flip union g) h - in fmap (flip map s′ ∘ flip lookup) h′ - postulate free-theorem-list-list : {β γ : Set} → (get : {α : Set} → List α → List α) → (f : β → γ) → get ∘ map f ≗ map f ∘ get |