summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-06-05 15:35:09 +0200
committerHelmut Grohne <helmut@subdivi.de>2012-06-05 15:35:09 +0200
commitac8dee6708affea52aedc1ffcc5c83f8043ad91d (patch)
treef11c8161fe240233ecaee4f6c773f4075f7b564f /Bidir.agda
parenta98ec27d280b41b86fad060aff60c3e9037fc669 (diff)
downloadbidiragda-ac8dee6708affea52aedc1ffcc5c83f8043ad91d.tar.gz
move bff and friends to submodule ListBFF
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda24
1 files changed, 2 insertions, 22 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 417e7f6..cbac029 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -23,16 +23,9 @@ open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨
open import FinMap
open import CheckInsert
-_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B
-_>>=_ = flip (flip maybe′ nothing)
+open import BFF using (_>>=_ ; fmap)
-fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
-fmap f = maybe′ (λ a → just (f a)) nothing
-
-assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A)
-assoc _ [] [] = just empty
-assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b)
-assoc _ _ _ = nothing
+open BFF.ListBFF using (assoc ; enumerate ; denumerate ; bff)
lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (restrict f is)
lemma-1 eq f [] = refl
@@ -169,19 +162,6 @@ lemma-2 eq (i ∷ is) (x ∷ xs) h p | just h' | Reveal_is_.[_] ir = begin
≡⟨ refl ⟩
map just (x ∷ xs) ∎
-enumerate : {A : Set} → (l : List A) → List (Fin (length l))
-enumerate l = toList (tabulate id)
-
-denumerate : {A : Set} (l : List A) → Fin (length l) → A
-denumerate l = flip lookupVec (fromList l)
-
-bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B))
-bff get eq s v = let s′ = enumerate s
- g = fromFunc (denumerate s)
- h = assoc eq (get s′) v
- h′ = fmap (flip union g) h
- in fmap (flip map s′ ∘ flip lookup) h′
-
postulate
free-theorem-list-list : {β γ : Set} → (get : {α : Set} → List α → List α) → (f : β → γ) → get ∘ map f ≗ map f ∘ get