diff options
author | Helmut Grohne <helmut@subdivi.de> | 2012-10-22 10:42:21 +0200 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2012-10-22 10:42:21 +0200 |
commit | b01b94ab91ece430e72ac315689e78dc6dc49ebf (patch) | |
tree | eea276a8527ae637fcc104655fb7e033e0c99834 /Bidir.agda | |
parent | 7ba21759412a8b356f7790ac5f5e413302331183 (diff) | |
download | bidiragda-b01b94ab91ece430e72ac315689e78dc6dc49ebf.tar.gz |
parameterize Bidir via Carrier and deq
This avoids passing around the decidable equality explicitly.
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 160 |
1 files changed, 81 insertions, 79 deletions
@@ -1,4 +1,6 @@ -module Bidir where +open import Relation.Binary.Core using (Decidable ; _≡_) + +module Bidir (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) @@ -15,7 +17,7 @@ open import Data.Empty using (⊥-elim) open import Function using (id ; _∘_ ; flip) open import Relation.Nullary using (yes ; no) open import Relation.Nullary.Negation using (contradiction) -open import Relation.Binary.Core using (_≡_ ; refl) +open import Relation.Binary.Core using (refl) open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; _≗_ ; trans) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) @@ -26,126 +28,126 @@ open import CheckInsert open import BFF using (_>>=_ ; fmap) open BFF.VecBFF using (assoc ; enumerate ; denumerate ; bff) -lemma-1 : {τ : Set} {m n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : Vec (Fin n) m) → assoc eq is (map f is) ≡ just (restrict f (toList is)) -lemma-1 eq f [] = refl -lemma-1 eq f (i ∷ is′) = begin - assoc eq (i ∷ is′) (map f (i ∷ is′)) +lemma-1 : {m n : ℕ} → (f : Fin n → Carrier) → (is : Vec (Fin n) m) → assoc deq is (map f is) ≡ just (restrict f (toList is)) +lemma-1 f [] = refl +lemma-1 f (i ∷ is′) = begin + assoc deq (i ∷ is′) (map f (i ∷ is′)) ≡⟨ refl ⟩ - assoc eq is′ (map f is′) >>= checkInsert eq i (f i) - ≡⟨ cong (λ m → m >>= checkInsert eq i (f i)) (lemma-1 eq f is′) ⟩ - just (restrict f (toList is′)) >>= (checkInsert eq i (f i)) + assoc deq is′ (map f is′) >>= checkInsert deq i (f i) + ≡⟨ cong (λ m → m >>= checkInsert deq i (f i)) (lemma-1 f is′) ⟩ + just (restrict f (toList is′)) >>= (checkInsert deq i (f i)) ≡⟨ refl ⟩ - checkInsert eq i (f i) (restrict f (toList is′)) - ≡⟨ lemma-checkInsert-restrict eq f i (toList is′) ⟩ + checkInsert deq i (f i) (restrict f (toList is′)) + ≡⟨ lemma-checkInsert-restrict deq f i (toList is′) ⟩ just (restrict f (toList (i ∷ is′))) ∎ -lemma-lookupM-assoc : {A : Set} {m n : ℕ} → (eq : EqInst A) → (i : Fin n) → (is : Vec (Fin n) m) → (x : A) → (xs : Vec A m) → (h : FinMapMaybe n A) → assoc eq (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x -lemma-lookupM-assoc eq i is x xs h p with assoc eq is xs -lemma-lookupM-assoc eq i is x xs h () | nothing -lemma-lookupM-assoc eq i is x xs h p | just h' = apply-checkInsertProof eq i x h' record +lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc deq (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x +lemma-lookupM-assoc i is x xs h p with assoc deq is xs +lemma-lookupM-assoc i is x xs h () | nothing +lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof deq i x h' record { same = λ lookupM≡justx → begin lookupM i h - ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-same eq i x h' lookupM≡justx))) ⟩ + ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-same deq i x h' lookupM≡justx))) ⟩ lookupM i h' ≡⟨ lookupM≡justx ⟩ just x ∎ ; new = λ lookupM≡nothing → begin lookupM i h - ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-new eq i x h' lookupM≡nothing))) ⟩ + ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-new deq i x h' lookupM≡nothing))) ⟩ lookupM i (insert i x h') ≡⟨ lemma-lookupM-insert i x h' ⟩ just x ∎ - ; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong eq i x h' x' x≢x' lookupM≡justx')) + ; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong deq i x h' x' x≢x' lookupM≡justx')) } -lemma-∉-lookupM-assoc : {A : Set} {m n : ℕ} → (eq : EqInst A) → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec A m) → (h : FinMapMaybe n A) → assoc eq is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing -lemma-∉-lookupM-assoc eq i [] [] h ph i∉is = begin +lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc deq is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing +lemma-∉-lookupM-assoc i [] [] h ph i∉is = begin lookupM i h ≡⟨ cong (lookupM i) (sym (lemma-from-just ph)) ⟩ lookupM i empty ≡⟨ lemma-lookupM-empty i ⟩ nothing ∎ -lemma-∉-lookupM-assoc eq i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc eq is' xs' | inspect (assoc eq is') xs' -lemma-∉-lookupM-assoc eq i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ] -lemma-∉-lookupM-assoc eq i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = apply-checkInsertProof eq i' x' h' record { +lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc deq is' xs' | inspect (assoc deq is') xs' +lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ] +lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = apply-checkInsertProof deq i' x' h' record { same = λ lookupM-i'-h'≡just-x' → begin lookupM i h - ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-same eq i' x' h' lookupM-i'-h'≡just-x'))) ⟩ + ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x'))) ⟩ lookupM i h' - ≡⟨ lemma-∉-lookupM-assoc eq i is' xs' h' ph' (i∉is ∘ there) ⟩ + ≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩ nothing ∎ ; new = λ lookupM-i'-h'≡nothing → begin lookupM i h - ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-new eq i' x' h' lookupM-i'-h'≡nothing))) ⟩ + ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-new deq i' x' h' lookupM-i'-h'≡nothing))) ⟩ lookupM i (insert i' x' h') ≡⟨ sym (lemma-lookupM-insert-other i i' x' h' (i∉is ∘ here)) ⟩ lookupM i h' - ≡⟨ lemma-∉-lookupM-assoc eq i is' xs' h' ph' (i∉is ∘ there) ⟩ + ≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩ nothing ∎ - ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong eq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) + ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong deq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) } _in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set _in-domain-of_ is h = All (λ i → ∃ λ x → lookupM i h ≡ just x) is -lemma-assoc-domain : {m n : ℕ} {A : Set} → (eq : EqInst A) → (is : Vec (Fin n) m) → (xs : Vec A m) → (h : FinMapMaybe n A) → assoc eq is xs ≡ just h → (toList is) in-domain-of h -lemma-assoc-domain eq [] [] h ph = Data.List.All.[] -lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h ph with assoc eq is' xs' | inspect (assoc eq is') xs' -lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ] -lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply-checkInsertProof eq i' x' h' record { +lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc deq is xs ≡ just h → (toList is) in-domain-of h +lemma-assoc-domain [] [] h ph = Data.List.All.[] +lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc deq is' xs' | inspect (assoc deq is') xs' +lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ] +lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply-checkInsertProof deq i' x' h' record { same = λ lookupM-i'-h'≡just-x' → Data.List.All._∷_ - (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-same eq i' x' h' lookupM-i'-h'≡just-x')))) lookupM-i'-h'≡just-x')) - (lemma-assoc-domain eq is' xs' h (trans ph' (trans (sym (lemma-checkInsert-same eq i' x' h' lookupM-i'-h'≡just-x')) ph))) + (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x')))) lookupM-i'-h'≡just-x')) + (lemma-assoc-domain is' xs' h (trans ph' (trans (sym (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x')) ph))) ; new = λ lookupM-i'-h'≡nothing → Data.List.All._∷_ - (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-new eq i' x' h' lookupM-i'-h'≡nothing)))) (lemma-lookupM-insert i' x' h'))) + (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-new deq i' x' h' lookupM-i'-h'≡nothing)))) (lemma-lookupM-insert i' x' h'))) (Data.List.All.map - (λ {i} p → proj₁ p , lemma-lookupM-checkInsert eq i i' (proj₁ p) x' h' h (proj₂ p) ph) - (lemma-assoc-domain eq is' xs' h' ph')) - ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong eq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) + (λ {i} p → proj₁ p , lemma-lookupM-checkInsert deq i i' (proj₁ p) x' h' h (proj₂ p) ph) + (lemma-assoc-domain is' xs' h' ph')) + ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong deq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) } -lemma-map-lookupM-insert : {m n : ℕ} {A : Set} → (eq : EqInst A) → (i : Fin n) → (is : Vec (Fin n) m) → (x : A) → (h : FinMapMaybe n A) → i ∉ (toList is) → (toList is) in-domain-of h → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is -lemma-map-lookupM-insert eq i [] x h i∉is ph = refl -lemma-map-lookupM-insert eq i (i' ∷ is') x h i∉is ph = begin +lemma-map-lookupM-insert : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (h : FinMapMaybe n Carrier) → i ∉ (toList is) → (toList is) in-domain-of h → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is +lemma-map-lookupM-insert i [] x h i∉is ph = refl +lemma-map-lookupM-insert i (i' ∷ is') x h i∉is ph = begin lookupM i' (insert i x h) ∷ map (flip lookupM (insert i x h)) is' ≡⟨ cong (flip _∷_ (map (flip lookupM (insert i x h)) is')) (sym (lemma-lookupM-insert-other i' i x h (i∉is ∘ here ∘ sym))) ⟩ lookupM i' h ∷ map (flip lookupM (insert i x h)) is' - ≡⟨ cong (_∷_ (lookupM i' h)) (lemma-map-lookupM-insert eq i is' x h (i∉is ∘ there) (Data.List.All.tail ph)) ⟩ + ≡⟨ cong (_∷_ (lookupM i' h)) (lemma-map-lookupM-insert i is' x h (i∉is ∘ there) (Data.List.All.tail ph)) ⟩ lookupM i' h ∷ map (flip lookupM h) is' ∎ -lemma-map-lookupM-assoc : {m n : ℕ} {A : Set} → (eq : EqInst A) → (i : Fin n) → (is : Vec (Fin n) m) → (x : A) → (xs : Vec A m) → (h : FinMapMaybe n A) → (h' : FinMapMaybe n A) → assoc eq is xs ≡ just h' → checkInsert eq i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is -lemma-map-lookupM-assoc eq i [] x [] h h' ph' ph = refl -lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' ph with any (_≟_ i) (toList (i' ∷ is')) -lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p with Data.List.All.lookup (lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h' ph') p -lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p | (x'' , p') with lookupM i h' -lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p | (x'' , refl) | .(just x'') with eq x x'' -lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h .h ph' refl | yes p | (.x , refl) | .(just x) | yes refl = refl -lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' () | yes p | (x'' , refl) | .(just x'') | no ¬p -lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | no ¬p rewrite lemma-∉-lookupM-assoc eq i (i' ∷ is') (x' ∷ xs') h' ph' ¬p = begin +lemma-map-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → (h' : FinMapMaybe n Carrier) → assoc deq is xs ≡ just h' → checkInsert deq i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is +lemma-map-lookupM-assoc i [] x [] h h' ph' ph = refl +lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph with any (_≟_ i) (toList (i' ∷ is')) +lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p with Data.List.All.lookup (lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h' ph') p +lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p | (x'' , p') with lookupM i h' +lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p | (x'' , refl) | .(just x'') with deq x x'' +lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h .h ph' refl | yes p | (.x , refl) | .(just x) | yes refl = refl +lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' () | yes p | (x'' , refl) | .(just x'') | no ¬p +lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | no ¬p rewrite lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h' ph' ¬p = begin map (flip lookupM h) (i' ∷ is') ≡⟨ map-cong (λ i'' → cong (lookupM i'') (lemma-from-just (sym ph))) (i' ∷ is') ⟩ map (flip lookupM (insert i x h')) (i' ∷ is') - ≡⟨ lemma-map-lookupM-insert eq i (i' ∷ is') x h' ¬p (lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h' ph') ⟩ + ≡⟨ lemma-map-lookupM-insert i (i' ∷ is') x h' ¬p (lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h' ph') ⟩ map (flip lookupM h') (i' ∷ is') ∎ -lemma-2 : {τ : Set} {m n : ℕ} → (eq : EqInst τ) → (is : Vec (Fin n) m) → (v : Vec τ m) → (h : FinMapMaybe n τ) → assoc eq is v ≡ just h → map (flip lookupM h) is ≡ map just v -lemma-2 eq [] [] h p = refl -lemma-2 eq (i ∷ is) (x ∷ xs) h p with assoc eq is xs | inspect (assoc eq is) xs -lemma-2 eq (i ∷ is) (x ∷ xs) h () | nothing | _ -lemma-2 eq (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin +lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc deq is v ≡ just h → map (flip lookupM h) is ≡ map just v +lemma-2 [] [] h p = refl +lemma-2 (i ∷ is) (x ∷ xs) h p with assoc deq is xs | inspect (assoc deq is) xs +lemma-2 (i ∷ is) (x ∷ xs) h () | nothing | _ +lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin map (flip lookupM h) (i ∷ is) ≡⟨ refl ⟩ lookupM i h ∷ map (flip lookupM h) is - ≡⟨ cong (flip _∷_ (map (flip lookupM h) is)) (lemma-lookupM-assoc eq i is x xs h (begin - assoc eq (i ∷ is) (x ∷ xs) - ≡⟨ cong (flip _>>=_ (checkInsert eq i x)) ir ⟩ - checkInsert eq i x h' + ≡⟨ cong (flip _∷_ (map (flip lookupM h) is)) (lemma-lookupM-assoc i is x xs h (begin + assoc deq (i ∷ is) (x ∷ xs) + ≡⟨ cong (flip _>>=_ (checkInsert deq i x)) ir ⟩ + checkInsert deq i x h' ≡⟨ p ⟩ just h ∎) ) ⟩ just x ∷ map (flip lookupM h) is - ≡⟨ cong (_∷_ (just x)) (lemma-map-lookupM-assoc eq i is x xs h h' ir p) ⟩ + ≡⟨ cong (_∷_ (just x)) (lemma-map-lookupM-assoc i is x xs h h' ir p) ⟩ just x ∷ map (flip lookupM h') is - ≡⟨ cong (_∷_ (just x)) (lemma-2 eq is xs h' ir) ⟩ + ≡⟨ cong (_∷_ (just x)) (lemma-2 is xs h' ir) ⟩ just x ∷ map just xs ≡⟨ refl ⟩ map just (x ∷ xs) ∎ @@ -165,16 +167,16 @@ lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin ≡⟨ lemma-map-denumerate-enumerate as ⟩ as ∎) -theorem-1 : {getlen : ℕ → ℕ} → (get : get-type getlen) → {m : ℕ} {τ : Set} → (eq : EqInst τ) → (s : Vec τ m) → bff get eq s (get s) ≡ just s -theorem-1 get eq s = begin - bff get eq s (get s) - ≡⟨ cong (bff get eq s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ - bff get eq s (get (map (denumerate s) (enumerate s))) - ≡⟨ cong (bff get eq s) (free-theorem get (denumerate s) (enumerate s)) ⟩ - bff get eq s (map (denumerate s) (get (enumerate s))) +theorem-1 : {getlen : ℕ → ℕ} → (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → bff get deq s (get s) ≡ just s +theorem-1 get s = begin + bff get deq s (get s) + ≡⟨ cong (bff get deq s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ + bff get deq s (get (map (denumerate s) (enumerate s))) + ≡⟨ cong (bff get deq s) (free-theorem get (denumerate s) (enumerate s)) ⟩ + bff get deq s (map (denumerate s) (get (enumerate s))) ≡⟨ refl ⟩ - fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (denumerate s))) (assoc eq (get (enumerate s)) (map (denumerate s) (get (enumerate s))))) - ≡⟨ cong (fmap (flip map (enumerate s) ∘ flip lookup) ∘ fmap (flip union (fromFunc (denumerate s)))) (lemma-1 eq (denumerate s) (get (enumerate s))) ⟩ + fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (denumerate s))) (assoc deq (get (enumerate s)) (map (denumerate s) (get (enumerate s))))) + ≡⟨ cong (fmap (flip map (enumerate s) ∘ flip lookup) ∘ fmap (flip union (fromFunc (denumerate s)))) (lemma-1 (denumerate s) (get (enumerate s))) ⟩ fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (flip lookupVec s))) (just (restrict (denumerate s) (toList (get (enumerate s)))))) ≡⟨ refl ⟩ just ((flip map (enumerate s) ∘ flip lookup) (union (restrict (denumerate s) (toList (get (enumerate s)))) (fromFunc (denumerate s)))) @@ -218,16 +220,16 @@ lemma-union-not-used h h' (i ∷ is') p | x , lookupM-i-h≡just-x = begin ≡⟨ cong (_∷_ (lookupM i h)) (lemma-union-not-used h h' is' (Data.List.All.tail p)) ⟩ lookupM i h ∷ map (flip lookupM h) is' ∎ -theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {τ : Set} {m : ℕ} → (eq : EqInst τ) → (v : Vec τ (getlen m)) → (s u : Vec τ m) → bff get eq s v ≡ just u → get u ≡ v -theorem-2 get eq v s u p with lemma-fmap-just (assoc eq (get (enumerate s)) v) (proj₂ (lemma-fmap-just (fmap (flip union (fromFunc (denumerate s))) (assoc eq (get (enumerate s)) v)) p)) -theorem-2 get eq v s u p | h , ph = begin +theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get deq s v ≡ just u → get u ≡ v +theorem-2 get v s u p with lemma-fmap-just (assoc deq (get (enumerate s)) v) (proj₂ (lemma-fmap-just (fmap (flip union (fromFunc (denumerate s))) (assoc deq (get (enumerate s)) v)) p)) +theorem-2 get v s u p | h , ph = begin get u ≡⟨ lemma-from-just (begin just (get u) ≡⟨ refl ⟩ fmap get (just u) ≡⟨ cong (fmap get) (sym p) ⟩ - fmap get (bff get eq s v) + fmap get (bff get deq s v) ≡⟨ cong (fmap get ∘ fmap (flip map (enumerate s) ∘ flip lookup) ∘ fmap (flip union (fromFunc (denumerate s)))) ph ⟩ fmap get (fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (denumerate s))) (just h))) ≡⟨ refl ⟩ @@ -238,9 +240,9 @@ theorem-2 get eq v s u p | h , ph = begin map (flip lookup (union h (fromFunc (denumerate s)))) (get (enumerate s)) ≡⟨ lemma-from-map-just (begin map just (map (flip lookup (union h (fromFunc (denumerate s)))) (get (enumerate s))) - ≡⟨ lemma-union-not-used h (fromFunc (denumerate s)) (get (enumerate s)) (lemma-assoc-domain eq (get (enumerate s)) v h ph) ⟩ + ≡⟨ lemma-union-not-used h (fromFunc (denumerate s)) (get (enumerate s)) (lemma-assoc-domain (get (enumerate s)) v h ph) ⟩ map (flip lookupM h) (get (enumerate s)) - ≡⟨ lemma-2 eq (get (enumerate s)) v h ph ⟩ + ≡⟨ lemma-2 (get (enumerate s)) v h ph ⟩ map just v ∎) ⟩ v ∎ |