summaryrefslogtreecommitdiff
path: root/CheckInsert.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-09-26 22:02:48 +0200
committerHelmut Grohne <helmut@subdivi.de>2012-09-26 22:02:48 +0200
commit8546a8812a4fdaf3e3d7a7ba3433894db8b25a14 (patch)
treecafa975b28934f1e972d0f01caf65f6298dae6ab /CheckInsert.agda
parente23173b45a08fde6dd2decdc2e985ec3df90231b (diff)
downloadbidiragda-8546a8812a4fdaf3e3d7a7ba3433894db8b25a14.tar.gz
use _\==n_ and _\notin_ instead of \neg
Consistent. Shorter.
Diffstat (limited to 'CheckInsert.agda')
-rw-r--r--CheckInsert.agda10
1 files changed, 5 insertions, 5 deletions
diff --git a/CheckInsert.agda b/CheckInsert.agda
index c482423..40a57d6 100644
--- a/CheckInsert.agda
+++ b/CheckInsert.agda
@@ -5,9 +5,9 @@ open import Data.Fin using (Fin)
open import Data.Fin.Props using (_≟_)
open import Data.Maybe using (Maybe ; nothing ; just)
open import Data.List using (List ; [] ; _∷_)
-open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
+open import Relation.Nullary using (Dec ; yes ; no)
open import Relation.Nullary.Negation using (contradiction)
-open import Relation.Binary.Core using (_≡_ ; refl)
+open import Relation.Binary.Core using (_≡_ ; refl ; _≢_)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
@@ -27,7 +27,7 @@ record checkInsertProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A)
field
same : lookupM i m ≡ just x → P
new : lookupM i m ≡ nothing → P
- wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → P
+ wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → P
apply-checkInsertProof : {A P : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → checkInsertProof eq i x m P → P
apply-checkInsertProof eq i x m rp with lookupM i m | inspect (lookupM i) m
@@ -46,7 +46,7 @@ lemma-checkInsert-new : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n)
lemma-checkInsert-new eq i x m p with lookupM i m
lemma-checkInsert-new eq i x m refl | .nothing = refl
-lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing
+lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → x ≢ x' → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing
lemma-checkInsert-wrong eq i x m x' d p with lookupM i m
lemma-checkInsert-wrong eq i x m x' d refl | .(just x') with eq x x'
lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | yes q = contradiction q d
@@ -56,7 +56,7 @@ record checkInsertEqualProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x
field
same : lookupM i m ≡ just x → just m ≡ e
new : lookupM i m ≡ nothing → just (insert i x m) ≡ e
- wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → nothing ≡ e
+ wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → nothing ≡ e
lift-checkInsertProof : {A : Set} {n : ℕ} {eq : EqInst A} {i : Fin n} {x : A} {m : FinMapMaybe n A} {e : Maybe (FinMapMaybe n A)} → checkInsertEqualProof eq i x m e → checkInsertProof eq i x m (checkInsert eq i x m ≡ e)
lift-checkInsertProof {_} {_} {eq} {i} {x} {m} o = record