diff options
author | Helmut Grohne <helmut@subdivi.de> | 2012-09-26 22:02:48 +0200 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2012-09-26 22:02:48 +0200 |
commit | 8546a8812a4fdaf3e3d7a7ba3433894db8b25a14 (patch) | |
tree | cafa975b28934f1e972d0f01caf65f6298dae6ab /CheckInsert.agda | |
parent | e23173b45a08fde6dd2decdc2e985ec3df90231b (diff) | |
download | bidiragda-8546a8812a4fdaf3e3d7a7ba3433894db8b25a14.tar.gz |
use _\==n_ and _\notin_ instead of \neg
Consistent. Shorter.
Diffstat (limited to 'CheckInsert.agda')
-rw-r--r-- | CheckInsert.agda | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/CheckInsert.agda b/CheckInsert.agda index c482423..40a57d6 100644 --- a/CheckInsert.agda +++ b/CheckInsert.agda @@ -5,9 +5,9 @@ open import Data.Fin using (Fin) open import Data.Fin.Props using (_≟_) open import Data.Maybe using (Maybe ; nothing ; just) open import Data.List using (List ; [] ; _∷_) -open import Relation.Nullary using (Dec ; yes ; no ; ¬_) +open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Nullary.Negation using (contradiction) -open import Relation.Binary.Core using (_≡_ ; refl) +open import Relation.Binary.Core using (_≡_ ; refl ; _≢_) open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) @@ -27,7 +27,7 @@ record checkInsertProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) field same : lookupM i m ≡ just x → P new : lookupM i m ≡ nothing → P - wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → P + wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → P apply-checkInsertProof : {A P : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → checkInsertProof eq i x m P → P apply-checkInsertProof eq i x m rp with lookupM i m | inspect (lookupM i) m @@ -46,7 +46,7 @@ lemma-checkInsert-new : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) lemma-checkInsert-new eq i x m p with lookupM i m lemma-checkInsert-new eq i x m refl | .nothing = refl -lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing +lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → x ≢ x' → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing lemma-checkInsert-wrong eq i x m x' d p with lookupM i m lemma-checkInsert-wrong eq i x m x' d refl | .(just x') with eq x x' lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | yes q = contradiction q d @@ -56,7 +56,7 @@ record checkInsertEqualProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x field same : lookupM i m ≡ just x → just m ≡ e new : lookupM i m ≡ nothing → just (insert i x m) ≡ e - wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → nothing ≡ e + wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → nothing ≡ e lift-checkInsertProof : {A : Set} {n : ℕ} {eq : EqInst A} {i : Fin n} {x : A} {m : FinMapMaybe n A} {e : Maybe (FinMapMaybe n A)} → checkInsertEqualProof eq i x m e → checkInsertProof eq i x m (checkInsert eq i x m ≡ e) lift-checkInsertProof {_} {_} {eq} {i} {x} {m} o = record |