diff options
author | Helmut Grohne <helmut@subdivi.de> | 2012-10-22 11:21:10 +0200 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2012-10-22 11:21:10 +0200 |
commit | 9bc4007c94a94706acbfb02103581b3d94e38001 (patch) | |
tree | 7c343f526502951e32fbf2fd8ac486ea8b42b569 /CheckInsert.agda | |
parent | 58038d636d9f1225f8355c22102823e3168ad56c (diff) | |
download | bidiragda-9bc4007c94a94706acbfb02103581b3d94e38001.tar.gz |
finally parameterize CheckInsert
Also adapt depending modules. Long lines generally become shorter. The
misleading name "EqInst" (hiding the decidability) got discarded.
Diffstat (limited to 'CheckInsert.agda')
-rw-r--r-- | CheckInsert.agda | 97 |
1 files changed, 48 insertions, 49 deletions
diff --git a/CheckInsert.agda b/CheckInsert.agda index 40a57d6..01f1302 100644 --- a/CheckInsert.agda +++ b/CheckInsert.agda @@ -1,4 +1,6 @@ -module CheckInsert where +open import Relation.Binary.Core using (Decidable ; _≡_) + +module CheckInsert (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) @@ -7,86 +9,83 @@ open import Data.Maybe using (Maybe ; nothing ; just) open import Data.List using (List ; [] ; _∷_) open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Nullary.Negation using (contradiction) -open import Relation.Binary.Core using (_≡_ ; refl ; _≢_) +open import Relation.Binary.Core using (refl ; _≢_) open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import FinMap -EqInst : Set → Set -EqInst A = (x y : A) → Dec (x ≡ y) - -checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A) -checkInsert eq i b m with lookupM i m -checkInsert eq i b m | just c with eq b c -checkInsert eq i b m | just .b | yes refl = just m -checkInsert eq i b m | just c | no ¬p = nothing -checkInsert eq i b m | nothing = just (insert i b m) +checkInsert : {n : ℕ} → Fin n → Carrier → FinMapMaybe n Carrier → Maybe (FinMapMaybe n Carrier) +checkInsert i b m with lookupM i m +checkInsert i b m | just c with deq b c +checkInsert i b m | just .b | yes refl = just m +checkInsert i b m | just c | no ¬p = nothing +checkInsert i b m | nothing = just (insert i b m) -record checkInsertProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (P : Set) : Set where +record checkInsertProof {n : ℕ} (i : Fin n) (x : Carrier) (m : FinMapMaybe n Carrier) (P : Set) : Set where field same : lookupM i m ≡ just x → P new : lookupM i m ≡ nothing → P - wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → P + wrong : (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → P -apply-checkInsertProof : {A P : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → checkInsertProof eq i x m P → P -apply-checkInsertProof eq i x m rp with lookupM i m | inspect (lookupM i) m -apply-checkInsertProof eq i x m rp | just x' | il with eq x x' -apply-checkInsertProof eq i x m rp | just .x | [ il ] | yes refl = checkInsertProof.same rp il -apply-checkInsertProof eq i x m rp | just x' | [ il ] | no x≢x' = checkInsertProof.wrong rp x' x≢x' il -apply-checkInsertProof eq i x m rp | nothing | [ il ] = checkInsertProof.new rp il +apply-checkInsertProof : {P : Set} {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → checkInsertProof i x m P → P +apply-checkInsertProof i x m rp with lookupM i m | inspect (lookupM i) m +apply-checkInsertProof i x m rp | just x' | il with deq x x' +apply-checkInsertProof i x m rp | just .x | [ il ] | yes refl = checkInsertProof.same rp il +apply-checkInsertProof i x m rp | just x' | [ il ] | no x≢x' = checkInsertProof.wrong rp x' x≢x' il +apply-checkInsertProof i x m rp | nothing | [ il ] = checkInsertProof.new rp il -lemma-checkInsert-same : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ just x → checkInsert eq i x m ≡ just m -lemma-checkInsert-same eq i x m p with lookupM i m -lemma-checkInsert-same eq i x m refl | .(just x) with eq x x -lemma-checkInsert-same eq i x m refl | .(just x) | yes refl = refl -lemma-checkInsert-same eq i x m refl | .(just x) | no x≢x = contradiction refl x≢x +lemma-checkInsert-same : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m +lemma-checkInsert-same i x m p with lookupM i m +lemma-checkInsert-same i x m refl | .(just x) with deq x x +lemma-checkInsert-same i x m refl | .(just x) | yes refl = refl +lemma-checkInsert-same i x m refl | .(just x) | no x≢x = contradiction refl x≢x -lemma-checkInsert-new : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ nothing → checkInsert eq i x m ≡ just (insert i x m) -lemma-checkInsert-new eq i x m p with lookupM i m -lemma-checkInsert-new eq i x m refl | .nothing = refl +lemma-checkInsert-new : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ nothing → checkInsert i x m ≡ just (insert i x m) +lemma-checkInsert-new i x m p with lookupM i m +lemma-checkInsert-new i x m refl | .nothing = refl -lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → x ≢ x' → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing -lemma-checkInsert-wrong eq i x m x' d p with lookupM i m -lemma-checkInsert-wrong eq i x m x' d refl | .(just x') with eq x x' -lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | yes q = contradiction q d -lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | no ¬q = refl +lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing +lemma-checkInsert-wrong i x m x' d p with lookupM i m +lemma-checkInsert-wrong i x m x' d refl | .(just x') with deq x x' +lemma-checkInsert-wrong i x m x' d refl | .(just x') | yes q = contradiction q d +lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl -record checkInsertEqualProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (e : Maybe (FinMapMaybe n A)) : Set where +record checkInsertEqualProof {n : ℕ} (i : Fin n) (x : Carrier) (m : FinMapMaybe n Carrier) (e : Maybe (FinMapMaybe n Carrier)) : Set where field same : lookupM i m ≡ just x → just m ≡ e new : lookupM i m ≡ nothing → just (insert i x m) ≡ e - wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → nothing ≡ e + wrong : (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → nothing ≡ e -lift-checkInsertProof : {A : Set} {n : ℕ} {eq : EqInst A} {i : Fin n} {x : A} {m : FinMapMaybe n A} {e : Maybe (FinMapMaybe n A)} → checkInsertEqualProof eq i x m e → checkInsertProof eq i x m (checkInsert eq i x m ≡ e) -lift-checkInsertProof {_} {_} {eq} {i} {x} {m} o = record - { same = λ p → trans (lemma-checkInsert-same eq i x m p) (checkInsertEqualProof.same o p) - ; new = λ p → trans (lemma-checkInsert-new eq i x m p) (checkInsertEqualProof.new o p) - ; wrong = λ x' q p → trans (lemma-checkInsert-wrong eq i x m x' q p) (checkInsertEqualProof.wrong o x' q p) +lift-checkInsertProof : {n : ℕ} {i : Fin n} {x : Carrier} {m : FinMapMaybe n Carrier} {e : Maybe (FinMapMaybe n Carrier)} → checkInsertEqualProof i x m e → checkInsertProof i x m (checkInsert i x m ≡ e) +lift-checkInsertProof {_} {i} {x} {m} o = record + { same = λ p → trans (lemma-checkInsert-same i x m p) (checkInsertEqualProof.same o p) + ; new = λ p → trans (lemma-checkInsert-new i x m p) (checkInsertEqualProof.new o p) + ; wrong = λ x' q p → trans (lemma-checkInsert-wrong i x m x' q p) (checkInsertEqualProof.wrong o x' q p) } -lemma-checkInsert-restrict : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (restrict f is) ≡ just (restrict f (i ∷ is)) -lemma-checkInsert-restrict {τ} eq f i is = apply-checkInsertProof eq i (f i) (restrict f is) (lift-checkInsertProof record +lemma-checkInsert-restrict : {n : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷ is)) +lemma-checkInsert-restrict f i is = apply-checkInsertProof i (f i) (restrict f is) (lift-checkInsertProof record { same = λ lookupM≡justx → cong just (lemma-insert-same (restrict f is) i (f i) lookupM≡justx) ; new = λ lookupM≡nothing → refl ; wrong = λ x' x≢x' lookupM≡justx' → contradiction (lemma-lookupM-restrict i f is x' lookupM≡justx') x≢x' }) -lemma-lookupM-checkInsert : {A : Set} {n : ℕ} → (eq : EqInst A) → (i j : Fin n) → (x y : A) → (h h' : FinMapMaybe n A) → lookupM i h ≡ just x → checkInsert eq j y h ≡ just h' → lookupM i h' ≡ just x -lemma-lookupM-checkInsert eq i j x y h h' pl ph' with lookupM j h | inspect (lookupM j) h -lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' with i ≟ j -lemma-lookupM-checkInsert eq i .i x y h .(insert i y h) pl refl | nothing | [ pl' ] | yes refl = lemma-just≢nothing (begin just x ≡⟨ sym pl ⟩ lookupM i h ≡⟨ pl' ⟩ (nothing ∎)) -lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' | no ¬p = begin +lemma-lookupM-checkInsert : {n : ℕ} → (i j : Fin n) → (x y : Carrier) → (h h' : FinMapMaybe n Carrier) → lookupM i h ≡ just x → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x +lemma-lookupM-checkInsert i j x y h h' pl ph' with lookupM j h | inspect (lookupM j) h +lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | nothing | pl' with i ≟ j +lemma-lookupM-checkInsert i .i x y h .(insert i y h) pl refl | nothing | [ pl' ] | yes refl = lemma-just≢nothing (begin just x ≡⟨ sym pl ⟩ lookupM i h ≡⟨ pl' ⟩ (nothing ∎)) +lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | nothing | pl' | no ¬p = begin lookupM i (insert j y h) ≡⟨ sym (lemma-lookupM-insert-other i j y h ¬p) ⟩ lookupM i h ≡⟨ pl ⟩ just x ∎ -lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just z | pl' with eq y z -lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just .y | pl' | yes refl = begin +lemma-lookupM-checkInsert i j x y h h' pl ph' | just z | pl' with deq y z +lemma-lookupM-checkInsert i j x y h h' pl ph' | just .y | pl' | yes refl = begin lookupM i h' ≡⟨ cong (lookupM i) (lemma-from-just (sym ph')) ⟩ lookupM i h ≡⟨ pl ⟩ just x ∎ -lemma-lookupM-checkInsert eq i j x y h h' pl () | just z | pl' | no ¬p +lemma-lookupM-checkInsert i j x y h h' pl () | just z | pl' | no ¬p |