summaryrefslogtreecommitdiff
path: root/FinMap.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-09-26 22:02:48 +0200
committerHelmut Grohne <helmut@subdivi.de>2012-09-26 22:02:48 +0200
commit8546a8812a4fdaf3e3d7a7ba3433894db8b25a14 (patch)
treecafa975b28934f1e972d0f01caf65f6298dae6ab /FinMap.agda
parente23173b45a08fde6dd2decdc2e985ec3df90231b (diff)
downloadbidiragda-8546a8812a4fdaf3e3d7a7ba3433894db8b25a14.tar.gz
use _\==n_ and _\notin_ instead of \neg
Consistent. Shorter.
Diffstat (limited to 'FinMap.agda')
-rw-r--r--FinMap.agda6
1 files changed, 3 insertions, 3 deletions
diff --git a/FinMap.agda b/FinMap.agda
index fce6384..4fc3e18 100644
--- a/FinMap.agda
+++ b/FinMap.agda
@@ -9,9 +9,9 @@ open import Data.Vec.Properties using (lookup∘tabulate)
open import Data.List using (List ; [] ; _∷_ ; map ; zip)
open import Data.Product using (_×_ ; _,_)
open import Function using (id ; _∘_ ; flip)
-open import Relation.Nullary using (¬_ ; yes ; no)
+open import Relation.Nullary using (yes ; no)
open import Relation.Nullary.Negation using (contradiction ; contraposition)
-open import Relation.Binary.Core using (_≡_ ; refl)
+open import Relation.Binary.Core using (_≡_ ; refl ; _≢_)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; _≗_ ; trans)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
@@ -62,7 +62,7 @@ lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m :
lemma-lookupM-insert zero _ (_ ∷ _) = refl
lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs
-lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m)
+lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → i ≢ j → lookupM i m ≡ lookupM i (insert j a m)
lemma-lookupM-insert-other zero zero a m p = contradiction refl p
lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl
lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl