summaryrefslogtreecommitdiff
path: root/FinMap.agda
blob: 4fc3e187192ecff6d4c65a62c04f70708140049c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
module FinMap where

open import Data.Nat using (ℕ ; zero ; suc)
open import Data.Maybe using (Maybe ; just ; nothing ; maybe′)
open import Data.Fin using (Fin ; zero ; suc)
open import Data.Fin.Props using (_≟_)
open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate) renaming (lookup to lookupVec)
open import Data.Vec.Properties using (lookup∘tabulate)
open import Data.List using (List ; [] ; _∷_ ; map ; zip)
open import Data.Product using (_×_ ; _,_)
open import Function using (id ; _∘_ ; flip)
open import Relation.Nullary using (yes ; no)
open import Relation.Nullary.Negation using (contradiction ; contraposition)
open import Relation.Binary.Core using (_≡_ ; refl ; _≢_)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; _≗_ ; trans)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)

FinMapMaybe : ℕ → Set → Set
FinMapMaybe n A = Vec (Maybe A) n

lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A
lookupM = lookupVec

insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A
insert f a m = m [ f ]≔ (just a)

empty : {A : Set} {n : ℕ} → FinMapMaybe n A
empty = replicate nothing

fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A
fromAscList []             = empty
fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)

FinMap : ℕ → Set → Set
FinMap n A = Vec A n

lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A
lookup = lookupVec

fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A
fromFunc = tabulate

union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n  A → FinMap n A
union m1 m2 = fromFunc (λ f → maybe′ id (lookup f m2) (lookupM f m1))

restrict : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
restrict f is = fromAscList (zip is (map f is))

lemma-just≢nothing : {A Whatever : Set} {a : A} → _≡_ {_} {Maybe A} (just a) nothing → Whatever
lemma-just≢nothing ()

lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → lookupM f m ≡ just a → m ≡ insert f a m
lemma-insert-same []               ()      a p
lemma-insert-same (.(just a) ∷ xs) zero    a refl = refl
lemma-insert-same (x ∷ xs)         (suc i) a p    = cong (_∷_ x) (lemma-insert-same xs i a p)

lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing
lemma-lookupM-empty zero    = refl
lemma-lookupM-empty (suc i) = lemma-lookupM-empty i

lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → lookupM i (insert i a m) ≡ just a
lemma-lookupM-insert zero    _ (_ ∷ _)  = refl
lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs

lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → i ≢ j → lookupM i m ≡ lookupM i (insert j a m)
lemma-lookupM-insert-other zero    zero    a m        p = contradiction refl p
lemma-lookupM-insert-other zero    (suc j) a (x ∷ xs) p = refl
lemma-lookupM-insert-other (suc i) zero    a (x ∷ xs) p = refl
lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (contraposition (cong suc) p)

lemma-from-just : {A : Set} → {x y : A} → _≡_ {_} {Maybe A} (just x) (just y) → x ≡ y
lemma-from-just refl = refl

lemma-lookupM-restrict : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → lookupM i (restrict f is) ≡ just a → f i ≡ a
lemma-lookupM-restrict i f [] a p = lemma-just≢nothing (trans (sym p) (lemma-lookupM-empty i))
lemma-lookupM-restrict i f (i' ∷ is) a p with i ≟ i'
lemma-lookupM-restrict i f (.i ∷ is) a p | yes refl = lemma-from-just (begin
   just (f i)
     ≡⟨ sym (lemma-lookupM-insert i (f i) (restrict f is)) ⟩
   lookupM i (insert i (f i) (restrict f is))
     ≡⟨ refl ⟩
   lookupM i (restrict f (i ∷ is))
     ≡⟨ p ⟩
   just a ∎)
lemma-lookupM-restrict i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-restrict i f is a (begin
  lookupM i (restrict f is)
    ≡⟨ lemma-lookupM-insert-other i i' (f i') (restrict f is) ¬p2 ⟩
  lookupM i (insert i' (f i') (restrict f is))
    ≡⟨ refl ⟩
  lookupM i (restrict f (i' ∷ is))
    ≡⟨ p ⟩
  just a ∎)

lemma-tabulate-∘ : {n : ℕ} {A : Set} → {f g : Fin n → A} → f ≗ g → tabulate f ≡ tabulate g
lemma-tabulate-∘ {zero}  {_} {f} {g} f≗g = refl
lemma-tabulate-∘ {suc n} {_} {f} {g} f≗g = begin
  f zero ∷ tabulate (f ∘ suc)
    ≡⟨ cong (flip Vec._∷_ (tabulate (f ∘ suc))) (f≗g zero) ⟩
  g zero ∷ tabulate (f ∘ suc)
    ≡⟨ cong (Vec._∷_ (g zero)) (lemma-tabulate-∘ (f≗g ∘ suc)) ⟩
  g zero ∷ tabulate (g ∘ suc) ∎

lemma-union-restrict : {n : ℕ} {A : Set} → (f : Fin n → A) → (is : List (Fin n)) → union (restrict f is) (fromFunc f) ≡ fromFunc f
lemma-union-restrict f is = begin
  union (restrict f is) (fromFunc f)
    ≡⟨ refl ⟩
  tabulate (λ j → maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is)))
    ≡⟨ lemma-tabulate-∘ (lemma-inner f is) ⟩
  tabulate f ∎
    where lemma-inner : {n : ℕ} {A : Set} (f : Fin n → A) → (is : List (Fin n)) → (j : Fin n) → maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is)) ≡ f j
          lemma-inner f []       j = begin
            maybe′ id (lookup j (fromFunc f)) (lookupM j empty)
              ≡⟨ cong (maybe′ id (lookup j (fromFunc f))) (lemma-lookupM-empty j) ⟩
            maybe′ id (lookup j (fromFunc f)) nothing
              ≡⟨ refl ⟩
            lookup j (fromFunc f)
              ≡⟨ lookup∘tabulate f j ⟩
            f j ∎
          lemma-inner f (i ∷ is)  j with j ≟ i
          lemma-inner f (.j ∷ is) j | yes refl = cong (maybe′ id (lookup j (fromFunc f))) (lemma-lookupM-insert j (f j) (restrict f is))
          lemma-inner f (i ∷ is)  j | no j≢i = begin
            maybe′ id (lookup j (fromFunc f)) (lookupM j (insert i (f i) (restrict f is)))
              ≡⟨ cong (maybe′ id (lookup j (fromFunc f))) (sym (lemma-lookupM-insert-other j i (f i) (restrict f is) j≢i)) ⟩
            maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is))
              ≡⟨ lemma-inner f is j ⟩
            f j ∎