diff options
Diffstat (limited to 'FinMap.agda')
-rw-r--r-- | FinMap.agda | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/FinMap.agda b/FinMap.agda index fce6384..4fc3e18 100644 --- a/FinMap.agda +++ b/FinMap.agda @@ -9,9 +9,9 @@ open import Data.Vec.Properties using (lookup∘tabulate) open import Data.List using (List ; [] ; _∷_ ; map ; zip) open import Data.Product using (_×_ ; _,_) open import Function using (id ; _∘_ ; flip) -open import Relation.Nullary using (¬_ ; yes ; no) +open import Relation.Nullary using (yes ; no) open import Relation.Nullary.Negation using (contradiction ; contraposition) -open import Relation.Binary.Core using (_≡_ ; refl) +open import Relation.Binary.Core using (_≡_ ; refl ; _≢_) open import Relation.Binary.PropositionalEquality using (cong ; sym ; _≗_ ; trans) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) @@ -62,7 +62,7 @@ lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : lemma-lookupM-insert zero _ (_ ∷ _) = refl lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs -lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m) +lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → i ≢ j → lookupM i m ≡ lookupM i (insert j a m) lemma-lookupM-insert-other zero zero a m p = contradiction refl p lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl |